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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3910

THE RESPONSE OF AN ATRPLANE TO RANDOM
ATMOSPHERIC DISTURBANCESL

By Franklin W. Diederich®

SUMMARY

The statistical approach to the gust-load problem which consists in
considering flight through turbulent air to be a stationary random process
is extended by including the effect of lateral variation of the instan-
taneous gust intensity on the aerodynamic forces. The forces obtained in
this manner are used in dynamic analyses of rigid and flexible airplanes
free to move vertically, in pitch, and in roll. The effect of the inter-
action of longitudinal, normal, and lateral gusts on the wing stresses
is also considered.

The method of anelyzing the rigid-body motions is similar to that
used for analyses of the dynamic stability of airplanes, in that the
equations of motion are referred to stability axes and expressed in terms
of conventional stability derivatives. The method of analyzing the
dynamic effects of structural flexibility consists in an extension of a
numerical-integration approach to the static aeroelastic problem and is
in a form which offers the possibility of calculating divergence and
flutter speeds with relatively little additional effort.

The mean-square values, correlation functions, and power spectra of
some of the aerodynamic forces required in this type of analysis are cal-
culated for one special correlation function of the atmospheric turbu-
lence. It is shown, for instance, that if the span is relatively large

-compared with the integral scale of turbulence, the mean-square lift and
root bending moment directly due to the gust are substantially reduced
when the differences in instantaneocus intensity of the turbulence along

the span are taken into account. However, if the motions of the alrplane
are taken into account the mean-square root bending moment masy be increased
a8 & result of these differences. Also, the mean-square pitching moment

is shown to be substantially increased if the tail length is relatively

lThis report represents, except for some minor changes, a thesis
submitted in May 1954 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the California Institute of
Technology, Pasadena, Calif.

2Now at the langley Aeronautical Laboratory, Langley Field, Va.
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large compared with the scale of turbulence. Finally, the wing stresses
due to longitudinal, normal, and lateral gusts are shown to be statis-~
tically independent under certain conditions.

INTRODUCTION

The local velocity fluctuations acting on an airplane flying through
atmospheric turbulence are functions of time defined only in a statistical
sense and, hence, constitute a stochastic or random process. Consequently,
the responses of the airplane, whether they are motions (linear or angular
displacement, velocities, or accelerations), forces (lift, pitching moment,
bending moment, and so on), stresses, or any other phenomena determined
by the turbulence, can also be known as functions of time in only a sta-
tistical sense.

This paper 1s concerned with the statistical characteristics of those
responses which have a bearing on the loads and stresses experienced by
the airplene; although other problems such as those relating to passenger
comfort or to the stabllity of the alrplane as a gun platform can be
treated in the same manner, they will not be considered here.

The first approaches to the gust-load problem which use the statis-
tical techniques developed for stationary random processes sppear to be
those of references 1, 2, and 3. (An earlier investigation concerned
with the motions of an airplane in turbulent air is reported in ref. k.)
The fundamentals of these approaches are discussed in some detail in
reference 1, and mention is made therein of investigations in other fields
of engineering and physics that have dealt with the problem of deducing
the statistical characteristics of the output or response of a dynamic
system from those of its input. The mean-square normal acceleration of
a rigid airplene free to move in one degree of freedom, namely, vertical
motion, is calculated in reference 2. In addition to being rigid, the
airplane is implicitly assumed to be small enough for all its components
to experience the same gust velocity at any instant of time. This means
that the span of the airplane must be small compared with the integral
scale of atmospheric turbulence, which on the basis of the available
knowledge concerning the properties of the atmosphere (ref. 4, for instance)
appears to be in the order of several hundred to 1,000 or 2,000 feet;
that is, the span of the airplane must be less than gbout 100 feet.

The purpose of the present paper is to extend this approach to large
flexible airplenes free to move in all directions. As used herein, the
terms "small" and "large" airplane refer to airplanes which are very small
and not very small, respectively, compared with the integral scale of
turbulence; thus, an alrplane flying in a wide variety of atmospheric
conditions may be "small" under certain conditions and "large" under
others. Similarly, the terms "rigid" airplane and "flexible" airplane
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are used to designate airplanes flying, respectively, at speeds far below
those at which dynamic and aeroelastic effects become important, and at
speeds at which these effects have to be teken into account the'same
airplane can thus be rigld under some conditions and flex1ble under
others.

Several fundamental assumptions are inherent in the analysis con-
tained in this paper. In the first place, all atmospheric disturbances,
motions, and structural deformations are assumed to be small enough to
produce forces that are linear and, hence, superposable. Also, the turbu-
lent "input" to the airplane is assumed to be stationary in a statistical
sense; that is, the turbulence in the plane of the flight path is homo-
geneous. For the large airplane, the additional assumption is made that
the turbulence is axisymmetric with respect to vertical axes, a condition
less severe than complete isotropy. The statistical characteristics of
the turbulence are thus assumed to be invariant under a translation of
the space origin within the horizontal plane and under a rotation of the
coordinates about the vertical axis. Finally, Taylor's hypothesis to
the effect that time displacements are equilvalent to longitudinal space
displacements is assumed to be wvalid.

The aerodynamic forces directly due to atmospheric turbulence, which
constitute the input forces for the dynamic system represented by the
airplane, are calculated in the first peart of this paper for the large
airplane, that is, for the case where the spanwise distribution of the
intensity of turbulence has to be taken into account. (The effect of
spanwise variation of gust intensity on the 1lift has been treated by a
slightly different method in ref. 5.)

The dynamics of the rigid airplane are considered in the second part.
The dynamic system is now represented by a set of three simultaneous
ordinary differential equations, rather than one as in reference 2; none-
theless, the problem of calculating the required transfer functions is
still one of simple algebra.

The next part is concerned with the small flexible airplane and thus
has direct application to fighter-type ailrplanes and guided missiles
operating at relatively high speeds, in addition to serving as a prelim-
inary to the last part of the paper. The dynamic system is now represented
by a partial differential equation, and the calculation of the transfer
functions requires the solution of ordinary differential equations. Once
these functions are calculated, however, the statistical. techniques are
the same as before, as a result of the fact that the lateral variation in
gust intensity is ignored. Either modal or numerical-integration approaches
may be used to analyze the dynamics of a swept-wing airplane with arbitrary
stiffness and mass distribution. Although modal approaches have usually
been preferred in the past for similar problems, it was believed that, in
view of the highly complex nature of modern aircraft structures and the
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advanced type of computing machinery required and generally avallable for
their analysis, the numerical-integration approach would be preferable
and it has, therefore, been used.

The last part contains the analysis of the large flexible airplane.
The statistical problem is now that of a system which i1s characterized
by & partial differential equation with time and a space coordinate as
independent variables end which is subjected to a random input that
varies in time and space, so that more is required than the transfer
functlons from the gust intensity at one point on the wing to the stresses
at another. The particular statistical problem presented by this case
is considered in some detall, and the appropriate transfer functions are
then obtained by using the numerical-integration approach presented in
the preceding part to solve, in effect, the ordinary differential equa-
tions which describe the wing deformations at any given frequency.

SYMBOLS
A aspect ratio
b span
c(k) Theodorsen function
Cr, 1lift coefficient, L/qS
CLbL lift-curve slope
Cy rolling-moment coefficient, L'/qSb
Clp coefficlent of damping in roll, defined as positive for

positive damping

Cmq damping-in-pitch derivative

Cma static pitching derivative

c chord, parallel to plane of symmetry
¢ average chord, S/b

¢y sectlon lift coefficient at station y, 1/qc
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EI bending stiffness

eq distance from section aerodynamic center to shear center,
fraction of chord

ey distance from shear center to section center of gravity,
fraction of chord

ez distance from shear center to the midchord point, fraction
of chord

e, distance from shear center to the B/M—Chord point, fraction
of chord

G(y,n) dimensionless lift-influence function (Green's function for
the spanwise lift distribution)

GJ torsional stiffness

g acceleration due to gravity

H(w) response to sinusoidal oscillation, Fourier transform of h(t)

h(t) indicial-response function

I mass moment of inertia about X-axis

Iy mass moment of inertia about Y-axis

JO,Jl Bessel functions of the first kind, order O and 1

Ko,Kq modified Bessel functions of the second kind, order O and 1

Kig integral of K

k reduced frequency, wc/2U

k' dimensionless frequency, oL¥/U

L 1ift

L' rolling moment

¥ integral scale of turbulence

distributed 1lift per unit distance along the span
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pitching moment

bending moment
twisting moment

mass (of airplane, unless designated otherwise by subscripts)
distributed mass per unit distance along the span

distributed twisting moment (about exes perpendicular to the
plane of symmetry) per unit distance along the span

dynamic pressure

radius of gyration about center of gravity; longitudinal dis-
Placement corresponding to time displacement T

wing area

L*
scale parameter, :7—
c/2

time
mean flying speed
longitudinal component of gust velocity

horizontal component of disturbed motion

lateral component of gust velocity
weight of airplane
vertical component of gust velocity

vertical component of disturbed motion

coordinate along mean flight path

distance from intersection of elastic axis and root chord to
airplane center of gravity

tail length, distance from airplane center of gravity to
aerodynamic center of tail
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Xy modified tail length, distance from intersection of elastic
axis and root chord to aerodynamic center of tail

y coordinate perpendicular to plane of symmetry

Z coordinate in plane of symmetry perpendicular to mean flight
' path; vertical deflection

o inclination of chord to X-axis

B span ratio, b/L¥

P(n) autoconvolution function for 7(y)

7(y) dimensionless lift distribution, ch/ECL

7' (y) dimensionless lift distribution in roll, ccl/aclp

il variable of Integration corresponding to y

| angle of pitch

A angle of sweepback

o] mass density of the air

T time displacement, argument of time-correlation function

3 the power spectrum ¢ in the case of axisymmetry

] two-dimensional power spectrum (double Fourier transform of ﬁ)
@(x) Sears function (unsteady-lift function for gust penetration)

V) one-dimensional or point power spectrum

two-dimensional power spectrum (single Fourier transform of W)

one-dimensional or point correlation function

= < R

two~dimensional correlation function

w frequency of oscillation
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Subscripts:

e,€ effective

f fuselage

r wing root

t taill

u horizontal component of turbulence

W wing; vertical component of turbulence

Matrix notation:

[ ] square or rectangular matrix
I 1 diagonal matrix

L J row matrix

{ } column matrix

Dots over symbols indicate derivatives with respect to time.

AFRODYNAMIC FORCES RESULTING DIRECTLY FROM

AT™OSPHERIC TURBULENCE

The motions of a rigid airplane depend on the overall forces and
moments, whereas the stresses of a rigid airplane and the motions and
stresses of a flexible airplane depend on the distribution of these
forces, as well. This part of the report is concerned with the calcu-
lation of the integrated and distributed forces and moments directly
due to atmospheric turbulence when the spanwise variation of gust inten-
sity has to be taken into account. (The forces and moments caused by
the motions which result from the forces treated in this part can be
calculated by conventional methods and will not be considered here,
although the combined forces will be considered in the following parts.)
Thus, this part serves as a basis for all the material presented in the
later parts pertalning to the large airplane, and, hence, the fundamental
notions required for an analysis of the large airplane are introduced
here and discussed in some detail.

The basic approach is as follows: First, the instantaneous value
of the quantity of interest, such as the lift, is expressed in terms of
the instantaneous gust intensity at a point and a suitable influence
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function. For the lift this influence function can and will be identified
with a certain 1lift distribution on the given wing in reverse flow; the
same procedure may and, in the case of the rolling moment, will be fol-
lowed for other integrated forces. On the other hand, for the local lift
the influence function 1s the Green's function for the three-dimensional
unsteady~1ift problem and cannot be identified with an easily calculated
lift distribution on the wing in reverse flow. Inasmuch as no knowledge
concerning this function appears to be avallable, a method of calculating
an approximate Green's function for this problem is outlined herein.

The required influence functions for integrated effects can be synthesized
from this function, and if the associated 1lift distribution in reverse
flow cannot be calculated conveniently this approach may be preferable.
This technique is 1llustrated here by means of the bending moment.

The next step consists in using the expression for the instantaneous
value of the given quantity to calculate a correlation function for this
quantity in terms of a correlation function of the normal component of
the atmospheric turbulence. The power spectrum for the given quantity
can then be obtained by taking the Fourier transform of its correlation
function. This power spectrum is considered herein to be the desired
end result, because the mean-square values of the quantity and its deriv-
atives can be obtained from it, and other statistical parameters of
interest can be obtained from these mean-square values. Several alter-
native approaches for calculating the aforementioned spectrum, either
from the correlation function or directly from the spectrum of atmospheric
turbulence, are given in connection with the 1ift and are directly appli-
cable to other quantities as well.

In this part of the report the assumption is made that the influence
functions of concern can be written as products of a function of time
alone and a function of distance along the span alone, and advantage is
taken of this simplification in calculating the desired spectra. This
restriction is removed in the last part of the report, where the influence
functions considered cannot be separated into space-dependent and time-
dependent constituents, and so the approaches outlined there sre general-
izations of those presented in this part; they may also be used for the
calculation of the spectra of the quantities considered in this part if
the assumption concerning the influence functions is not valid.

Definitions of Statistical Parameters

As pointed out in the introduction, the intensity of the vertical
component of turbulence w(t) is a random process, so that the resulting
forces can also be known only in a statistical sense. The purpose of
this part is to calculate certain statistical properties of these forces
namely, their mean-square values, their correlation functions, and thei:
power spectra. The fundamental principles invelved in statistical
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analyses of the type considered herein are expounded in some detail, and
citations of the literature on the subject are given in references 1

and 2. These fundamentals will therefore not be repeated here. However,
both for the sake of ready reference and inasmuch as the statistical
terms are not always defined in the same manner, the forms that are used
herein are indicated in the succeeding paragraphs.

The time average of a time-dependent quantity is designated by a bar
placed over the sym.bol,l and is defined as follows:

T
£ = linm ElT e(t) dt
T—> -T

The assumption will always be made that this limit exists and is inveriant
under a translation of the origin of time. This assumption implies that
the processes considered here are stationary in a statistical sense.

The mean of a random process f(t) 1s defined as its time average,
and is always assumed to be zero. In dealing with processes with nonzero
mean this analysis is thus pertinent only to the process which consists
of the difference between the original process and its mean value. Simi-
larly, the mean-square value of a random process f(t) is defined as
the time average of the square of the process, so that

T
£ = 1lim _1—f £2(¢) dt
T—>o T

The time-correlation function of f(t) is defined as
Ve(7) = £(t) £(t+r)

so that

£2 = y,(0)

lWhen no possibility of confusion exists, a bar is also used to
designate a space average, as in the case of © and ¥y. Also, for the
components of turbulence the correlation functions depend primarily on
space displacements and can be defined by space averages. For the sake
of consistency, however, they are considered to be defined by time
averages. :
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and the power spectrum of f(t) is defined as the Fourier transform of
the correlation function:

0

Pe(o) = [T ygle) ar

T r
— e ¥ (— dr
W _ f U)

‘The second form is the more convenient one when Vp Trepresents more
nearly a space correlation than a time correlation, so that it depends
directly on a space displacement r = Ut rather than on a time displace=-
ment 7. For the purposes of the analysis presented herein, the gust

or input correlation functions have this property, so that, for instance,
V,, mey be defined as

ww(r) = w(t) w(t-l—%—)

By virtue of the reciprocal properties of Fourier transforms and
the symmetry of ¢f(T), which is a direct consequence of the assumed

stationarity of f(t), f2 may be expressed in terms of the spectrum of
f as

2= e a (1)

If £(t) is the input of a linear system, the power spectrum of
the response x(t) of the system is related to the power spectrum of
£(t) by

2
9.(0) = [Bo)| 0h(w) (2)

where H(w) is the transfer function of the system, that i1s, the complex
amplitude of the response of the system to unit sinusoidal input. Hence,
H(w) is also the Fourier transform of the indicial response h(t) of
the system, which is defined herein as the response of the system to a
unit impulsive input:

H(w) =foo 10t p(4) at (3)
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where the lower limit could be taken as zero, since h(t) is zero for
t < 0. Conversely, h(t) can be obtained from H(w) by means of the
inverse of equation (3):

n(t) = g;\jpm el H(w) dw (3a)

The mean-square value of the response can then be obtained by inte-
grating its spectrum. Similarly, the mean-square values of the nth time
derivative of the response can be obtained from the (2n)th moment of the
output spectrum. For instance,

2

ERSCER

From the mean-square values of these derivatives other statistical quen~
tities of interest, such as the expected number of peaks of the response
per unit time, can then be calculated.

Lift-Influence Functions in Unsteady Flow

At any time the 1lift on a wing which results directly from stmos-
pheric disturbances can be expressed for an unswept wing as

L(t) = /:: dty f_:i h(ty,¥) w(U(t—tl),y) dy (&)

where h(t,y) dy is a lift-influence function which represents the lift
caused by an impulsive vertical gust of width dy which at time +t =0
impinges on the wing at station y.

The influence functions required in equation (4) are difficult to
calculate directly; methods for obtaining lift distributions on wings of
finite span in unsteady flow usually require numerical solutions which
do not lend themselves readily to the analysis of angle-of-attack distri-
butions represented by delta functions. However, by virtue of the reci-~
procity theorems of linearized lifting-surface theory (ref. 6, for
instance) the 1lift influence function for a twisted wing in indicial
motion is equal to the 1lift distribution on that wing during indicial
motion in the reverse direction with uniform unit angle of attack. The
1ift distribution in indicial motion with uniform angle of attack can
be calculated relatively easily.
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For the few cases for which calculations have been made (namely,
some unswept wings), this 1ift distribution tends to be substantially
invariant in time, except for overall magnitude. For instance, the
calculations of reference 7 indicate that the 1ift distribution of an
oscillating rectangular or elliptic wing in incompressible flow is sub-
stantially independent of frequency, so that in indicial motion 1t is
substantially independent of time. This simplification may not be valid
for swept wings.

The lift influence function can then be written as

n(t,y) = £ np(t) 7(y) (5)

where 7(y) defines the steady-state 1lift distribution for uniform unit
angle of attack:

CCZ
V(Y) = :?;-
ch1,

and where hy(t) describes the variation of the overall magnitude of
the 1lift as a function of time after entry into a sharp-edge gust and
may be written as

S

d Ut
hy(t) = — k
() at 2(672)
In turn, ks, 1is the lift response to a unit sharp-edge gust normalized

to a steady-state value of unity and is, as in the preceding equation,

C
derivative is taken here because the response wanted is the one to a
unit impulsive gust rather than a sharp-edge gust.

usually expressed in terms of semichord lengths traveled E%E. The time

The Fourier transform HL(w) of this function hL(t) is proportional

to a function ¢(k), which may be termed the generalized Sears function
because for two-dimensional incompressible flow it is the Sears function:

Cy @S
Mye) = —S g(x) (6)

where
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The function HL(w) represents the complex amplitude of the lift due

to sinusoidal gusts of unit amplitude and is thus the transfer function
from the gust to the 1lift.

Actually, only the absolute square of ¢(k) will be required. For
two-dimensional incompressible flow the following approximation is given
in reference 1:

lg()] % ~ —L (7)

1+ 2nk

This expresslon has the advantage of simplicity, although it is somewhat
in error compared with the abolute square of the Sears function at very
low frequencies, a fact which could be remedied by using the approximation

2 1l + ak
k =~
|¢( )‘ 1+ ak(1l + 2nk)

where a is about 15 for a good overall fit to the exact expression.
However, the behavior of the Sears function itself at very high frequencies
is unrealistic, because its absolute square goes to zero as 1/k, whereas
for any nonzero Mach number and any finite span the absolute square of

the generalized Sears function can be shown to tend to zero at least as

rapidly as l/k2 As a result of these discrepancies, the approximation
given by equation (7) and, for the same reason, the absolute square of
the exact Sears function, cannot be used to obtain moments of the 1lift
spectrum, that is, values of the mean-square derivatives of the 1ift,
although they may be adequate for calculating the mean-square value of
the 1ift itself in many cases, particularly when absolute accuracy is

not required. Whenever possible the values of l (k)l given in refer-
ence 8 for the plan form and Mach number of interest should be used.
Mean-Square Lift and Its Spectral Resolution for
the Unswept Wing

Basic equations.- The correlation function of the 1lift can be
expressed, by virtue of equation (4), as

@ /
¥y (7) =\/imk/iw\/ib/eljhb “a (t1,¥1) h(t2:¥) w(U(t-tl),yl) w(U(t+T—t2),y2> dyy dy, dty dt, (8)

b/2J-b/2
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where the averaged product on the right side represents a velocity corre-
lation function. This function depends in general on both space and time
displacements. However, if Taylor's hypothesis is made, the time dis-
placements are equivalent to longitudinal space displacements. The veloc-
ity correlation functions are then functions only of longitudinal and
lateral space displacements. Thus, for homogeneous turbulence,

~

w(x+Ut,y) w(x+§+U(t+T),y+n) =V (E+UT,n) (9)

In addition to Taylor's hypothesis and the assumption of homogeneity,
the turbulence is assumed to be axisymmetric with respect to vertical

axes, so that $w(g,n) is a function only of §2 + n2. This function

is the ordinary space-correlation function Vs SO that

Wy rt ) = v {{(weee Pf)

and, hence,

b/2 b/2 5
h(r) »/im h/:w f b/2 f b /2 (F2:71) 2(t2:72) ¥ (\’U THE ", y2'5'1) >dy1 dyp Aty dt,

If the assumption implicit in equation (5) is now made, the preceding
equation can be written as

w7 ey iy o

where

1

b/2 ,b/2
1Ifwe(UT) = s fb/g (U2T2+(y2—yl)2) 7(3’1) 7(y2) dy, dy,

%_/;b I(n) WW@UET%HE) an (11)

where, in turn, I(n) is an autoconvolution of y(y) defined by

) = g-fg/ 7 7)oy (12)

~-b/2
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The validity of equation (11) can be demonstrated by performing the
integration in the Y15Yo plane as indicated in the following sketch:

Yo =¥ + 0
yg)\ 2 1
Yo = V1
b
2
n
/ -
b 0 b
-2 2 1
-2
2

That is, integration is performed first over y;, with a variable
M=y, -V held constant. For this integration Y, 1is constant, so
that only 7(yl) and 7(yl+n) are involved, and the result is a

function of 1 which is one-half of the function F(n) defined by
equation (12). The second integration is then performed over P
yielding equation (11) except for a factor of 1/2. In this process,
only the part of the square above the line Yo =¥y is covered. How-

ever, by a similar process, the part of the integral corresponding to

the part of the plane below this line can be evaluated and shown to be
equal to the first part, so that by defining I' as in equation (12),

both parts are taken into account simultaneously in equation (11).

The quantity

)

Ve =y, (0)

b
=%fo r(n) ¥, (n) dn

may be considered an averaged mean-square vertical component of turbu-
lence; wwe(UT) is then the corresponding correlation function, and the

Fourier transform of the latter,
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P
Py (@) = n_]ﬁ/:m e ¥y (Ur) a(ur) (13)

is the corresponding power spectrum.

Once @We(w) has been obtained, the power spectrum of the 1lift

can be obtained by taking the Fourier transforms of both sides of equa~-
tion (10). The result is

¢ (w) = lHL(w) |2<Pwe(w) (14)

where HL(m) is the transfer function defined in the preceding section.

The mean square of the 1lift can then be obtained by integrating its
spectrum, as indicated in equation (1).

Equation (14) has the same form as the corresponding equation for
the case where spanwise averaging of the effects of turbulence is not
taken into account (see eq. (2) and ref. 1), except that ¢W(w) is now

replaced by @Wé(m). Thus, the spectrum of the averaged turbulence must

approach that of the unaveraged turbulence when the span approaches zZero,
as may be seen to be the case from equation (11) and the definitions of

y(y) and I(q).

Two alternative approaches.- The defining relations for @We(w),

equations (11) and (13), do not necessarily represent the best method

of calculating it in any given case. A slightly different expression
appears to be more convenient in general. It consists in substituting
equation (11) into equation (13) and inverting the order of integration .
to yield

b
Py () =%—fo r(n) &, (w,n) dn (15)
where-
~ ® -.Q-(UT) Y
Buom) = [ e Ty Peief ) a(ur) (6)
so that

F,(0,0) = 9 ()
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A third approach, which has certain advantages over the others, is
similar to the one that has been used in reference 5. In this approach
the assumption of axisymmetry is not made initially, and use is made of
the spectrum

Tu(Mhs) = ,tef_mf 7\1§+7\2n)w (g,m) d& dn (172)

The correlation function ww (Ur) can then be written as

b/2 bf2 0 i xlUT+x2 ye-yl]
(UT)—— f v1) 7(v2) & & f f & (A 0,) A, A
n/2 Jon/e 7(y1) 7(v2) &1 W2 i w(Mohp) dh dh,

Substitution of this expression into equation (13) and then interchanging
the order of integration yields:

P » 2
Py (@) = 5117_[_,,0 <Dw<§,?\2>|f‘(?\2)l N,

where

b/2
Mo =2 [ e ay

and is, as a result of the symmetry of 7(y), real and symmetric in .

Now, if the turbulence is axisymmetric, 5& depends only on

2

>
i

+ N2, that is,

8 (Aony) = ¢w<\’x12+x22> (170)

so that the expression for wwe(w) becomes

M

Py (@) = § fo i @w( (%’-)eﬂ\e) () a (18)
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where ©_(\) 1is related to ww(r) by

o, (\) = %ljg r JO(%r) U (r) dr

Although the spectra used in the last two approaches have been
defined by expressions involving the point correlation function ww(r),

they can be expressed equally well in terms of the point spectrum Qw(w),

so that if, say, an experimentally obtained point spectrum is to be used,
it need not be transformed into a correlation function before it can be
used in these calculations. The required relations are

5 Inl [” ©1 R
Galosm) = gyo) - B [ o (o) %
[ ;

LN dw 1
5 = = 1 (19)
(l)l - D
and.
2 [0 4]
2 (\) = - 2802 f o) @ s (20)
W T AU (wg ) 7\2[)‘2)3/2

where the notation l is used to specify that the finite part of

the integral is to be taken, an operation which may be performed by

integrating by parts and ignoring the infinite part, so that, in terms
of a proper integral,

@w()\) = - - o ——
AU w2 _ KEUE

Also, the function ¢W(K) can be obtained from $w(w,n) by means of
either of the relations

o, (\) ;}ﬁ f e G (0,1) an

-0

N 00

2 ~ -
= ¢, (NU,n) dn
wJ whis
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Results of calculations.- In order to illustrate the magnitude of
the effects under consideration, calculations have been made for a uni-
form loading 7(y) = 1 and a point correlation function which has been
used in references 1 and 2 and appears to fit experimental data (ref. L)
fairly well over a large portion of the significant frequency range,
namely,

=Y SR £ RSP S A
ww(r) W (l 2L*) e
so that

weLX 1 4 32
F148] 2
(l + k'2)

where LX is the integral scale of turbulence, which is here defined as

¥ =1%§Jf Wv(r) dr
W 0

P, (w) =

and where

oL

1
k T

This correlation function has the drawback that the moments of the
spectrum associated with it are infinite, so that it implies a process
with infinite mean-square derivatives, but it is quite useful if only
the mean-square value of the process itself is of interest.

For uniform loading,
=21 - ﬂ)
r(n) 2( 5

and
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and for the given correlation function,

20 % 12 2
x _ WL 1+ 31 y 2\_ /¥ 1 Y a2
T =75 Kl< itk >- ( *) KO<L*\]1+1< )

Y awd) W RS

where KO and K, are modified Bessel functions of the second kind, and

542

<I>w(7\) =
W (1 + k'e)

The mean-square average gust intensity for this case is given by

5/2

T3 D1 .eB
R

© B

where B =Db/L°, and is shown in figure 1(a). The correlation function
VWe is given by

Wwe(r) = %? o ﬁi(“i sinh~1 %) - @ ﬁb(c; sinh~=1 %) + %;(e‘c - e'402+52)

where o =r/L*, and where ﬁo(c;e) and ﬁl(c;e) are incomplete modi-
fied Bessel functions of the second kind defined by

)
R (030) = Jf cosh nd e~9 ¢osh 3 g4
9]

The spectrum @We(m) is given by

P (1 + k'2)

Byt + k2 Ko(BW)] + (1 - 5k'2)[2f— 2;341 + k2 Kl(BW) -
p2(1 + x'?) KO(BW)]}

ol ol

Py (@) =
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where Kio(x) is the integral of Kb(x):

Kio(x) =];) KO(XI) dxq

The functions WWe and @We (normalized with the averaged mean-

square turbulent veloclty) are shown in figures 2 and 3, respectively.
The effect of the span ratio on the normalized correlation function of
the averaged turbulence may be seen to be relatively small, so that the
effect on the unnormalized correlation function is primerily the decrease

in overall level given by the ratio of we2 to ;E. A simllar statement

may be made for the power spectrum. If the power spectrum were not
normalized the averaging effect of the span would tend to reduce the
intensity of the spectrum at all frequencies, but the high frequencies
would be attenuated much more than the low ones, as might be expected.

In fact, although the unaveraged spectrum decreases as w'2 at high

frequencies, the averaged spectrum decreases as wD.

The asymptotic values for b/L*—%>m are shown in flgures 2 and 3
in order to 1ndicate the nature of the functions considered here when
the scale of turbulence is small compared with the span, as may be the
cagse for a wind-tunnel model responding to natural or artificial tunnel
turbulence, or for a buffeting wing or tail surface, although this con-
dition is not of practical concern for the gust-load problem.

The power spectrum of the 1ift 1s equal to the product of the power
spectrum @We(w) and the absolute square of the transfer function HL(w),

as indicated in equation (lh). Inasmuch as this 1lift is not an end in
itself but only one of the parameters that enter into the calculations

of the motion of the airplane, its mean-square intensity is of little
practical significance; its spectrum is the quantity needed in further
calculations. However, 1f the mean-square intensity is wanted for any
reason it can be obtained by integrating the spectrum. Thus, for instance,

2
the approximate expression for |¢(k)| given by equation (7) and the
spectrum @W(w) used for the preceding calculation yields the mean-square

lift:

_ ¢ a8\ — L+ 3(E) s -1
(LE_)B__>0= (Iu > w225 J (Eﬂ) (& - 1og -_§_) _1_“____

U 7 [1 . (i)ar\u on
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where

L*

5—675

and, in view of the cobservation that much of the turbulent energy is
contained in a region for which the span has a very small effect on the
(normalized) spectrum, this equation should serve to furnish an approxi-

mation to the mean-square lift for nonvanishing span, provided Wez is

used instead of we. However, the mean-square values of the derivatives
of the 1ift cannot be calculated in this simple manner, because the
deviation of the normalized averaged spectrum from the point spectrum at
high frequencies cannot be ignored in calculating the moments of the
1ift spectrum.

Mean-Square Lift of the Swept Wing
For the yawed or sideslipping unswept wing, equations (10) and (14)

for the lift-correlation function and spectrum are still valid if an
appropriate lift-influence function is used, and if the correlation
function for the averaged turbulence is defined by
1 b cos A

(Ur) = —=—
Wwe b cos A Jg

where P(n) now pertains to a lift-distribution function y(y) which is

(n) WW<J(UT+H tan A)2+n2> an

appropriate for yawed motion and is defined for - % cos A § ¥ § g cos A.

The mean-square averaged intensity of the vertical component of turbulence
is then

1]

b cos A cos A

— b cos A
—_ ——L—fo P(n) ¥y{—1—) an

b
£ [ r(weos m) w(an) an

where 7' = Eagfx. Thus, this mean-square intensity is unaffected by the

yawing process, except for the slight change which results from the change

in F(n), although the spectral resolution of the averaged intensity
changes in the process.
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For the swept wing both Yo - ¥y1 and Iyel - Iyl, occur in the
integral, so that the reduction of the double integral for wwe(UT) to

a single integral (see eq. (ll)) cannot be affected so simply. The
double integral for the swept wing is

b/2 /2
Yo (UT) = 55 JC JF 7(v1) 7(¥) WW(J[?T+(|y2|—|yl|)tan-A]2+(y2—yl)2> dyy dy, (e1)

b/2 Vb /2

From this integral, by using rectangular 1ift distributions and the
aforementioned point correlation function, the mean square of the averaged
turbulence as well as the corresponding correlation function and power
spectrum have been calculated by numerical integration for various sweep

angles A, the ratio being maintained at 0.5. (The decision to

hold cog T rather than B constant was reached as a result of the

foregoing analysis of the yawed unswept wing, which indicated that the
effects of sweep should be minimized in this manner.) The results for

WGE are shown in figure 1, and the effect of sweep on we2 is seen to

be small for this comparison. The calculated correlation functions and

spectra (normalized with respect to weg) are not shown because they

agreed with those for A = 0 within less than 1 percent for most wvalues
of Ur and k', respectively.

Mean-Square Rolling Moment

In the preceding sections the averaging effect of the span has been
shown to consist, essentially, in reducing the effective intensity of the
turbulence sensed by the wing; thus, it only modifies the forces present
on a wing of small span. If the analysis is extended to the rolling
moment, however, a new phenomenon appears. When a wing is so small relative
to the scale of turbulence that at any instant all of its points experience
the same turbulent velocity, the wing experiences no rolling moment as the
result of the direct action of turbulence (although it may experience a
rolling moment indirectly as a result of the rolling and yawing motion
caused by the lateral component of the turbulence). On the other hand,
on a large wing the different intensities of the turbulence at different
points on the span give rise directly to a net rolling moment, which then
results in rolling motion. In this section the mean-square value of this
moment is calculated.

At any instant t the rolling moment L'(t) can be written in the
same form as the 1lift IL(t) in equation (4); however, according to the
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previously mentioned reciprocity theorem, the lift-influence fimec-
tion h(t;y) is now the lift distribution for an indicial roll with
unit helix angle at the wing tip. If the assumption of invariance of
this distribution with time is made, as for the symmetric case (see
eq. (5)), then the required lift-influence function can be written as

B(t,y) = £ b'(t) 7'(y)

CZ (t)qu
where h'(t) = —E——  and where the steady-state 1ift distribution
. cey
y'(y) = =5~ now pertains to a unit linear antisymmetric angle of attack.
cL1

The correlation function for the moment can then be written as

WLx(T)=/ f h'(ti) h'(tg) q;we.(U(Htl-tg)) dt, dt, (22)

where

b/2 ~b/2 ' ' 55 5
wwe'(UT) é% b/2 J[;/g 7 (yi) 4 (YQ) WW(VU T +(y2'yl) > dyl dy2

b
2.2 .2
%f ' (n) vw(\JU T ) dn (23)
0
where, in turn, in analogy with equation (12),

(b/2)-n
r'(n) = %‘/:b/Q 7' (y) 7'(yn) ay

Hence, the second and third approaches indicated in the section concerned
with the mean-square lift (see egs. (15) and (16)) can be used to obtain

b
% (@) = [ ) o) an (2%)
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and
s -4 e
where
. /2 .
T'(A) = %Ib/g 7' (y) eIV gy
and

C, gSb e
op (0) = (ZgU > |¢(k)|2 Py 1 (@) (25)

so that the mean-square rolling moment can be obtained by integrating
this spectrum.

A qualitative indication of the effect of span on the mean-gquare
rolling moment sensed by an airplane may be obtained from the quantity
ww 1(0), which represents the integral of the spectrum ¢, '- For a

e : e

linear loading, 7' =€ -Y— and

b/2

A
P
=
S

1]

(02N
= 1
1
(@)Y

5]
~|=
no

-+

§_|\
~|=
n
N——”’
L2

el

—
>
It

Hence, using the aforementioned expression for the point correlation
function yields

—
0, i(w) = L 18 [—52+2B'2+ (168"2 + ™) Ko(p') +
Ve 180 I 5 L

8 (1 + x'?)

(52" + 68'%) 1,(8")] + k'2[52 - 68'% - 1687 Ky (p') -

(528" + 28°) Ky(3") +p" Kio(B'El}
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where

Bdl + k'

B!

.

>3
Yyt (0) = 1—2;'{—% -6+ e-B(6 +6p +3p2 &2 BB)}
B

=

This spectrum and its integral approach zero linearly as B tends to
Zero.

Generalized Aerodynamic Influence Functions in Unsteady Flow

The aerodynamic influence functions used in the preceding sections
define the contribution of a given station of a wing to the total 1lift
and rolling moment. In the analysis of a flexible wing, and even in the
calculation of certain properties of a rigid wing, generalized aerodynamic
influence functions are required, which define the contribution of one
station on the wing to the lift at another station and thus represent a
Green's function for the unsteady spanwise 1ift distribution. No work
appears to have been done on such functions. For steady flow, apart from
some calculations for supersonic speeds which are based on the subdivision
of a given wing into a number of squares, the only available results
appear 1o be those given in references 9 and 10.

The analysis in this section 1s based on reference 8 and consists
in a generalization of the method presented therein to unsteady flow.
This method constitutes an attempt to predict the 1ift distribution for
any given twist on the basis of knowledge concerning a few definite
angle-of-attack distributions, and may therefore be termed a function-
interpolation method. For the present purpose, the presumably known 1ift
distributions are the ones for uniform angle of attack in direct and
reverse flow in a dimensionless form, namely, ccy/CCr; they will be

referred to as 7D(y) and 7g(y), respectively. (The function y(y)
used previously is the one now designated by 7R(y).) Also required is
the coefficient of damping in roll Clp' (The lift-curve slope and the

coefficient of damping in roll are the same in direct and reverse flow
by virtue of the reciprocity theorem, so that no distinction will be
made. )

The approach of reference 9 then yields the following épproximate
expression for the 1ift distribution due to any angle-of-attack distribu-
tion:
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e LR e P (26)
where
b/2
= _ 1 .
- bj_b/2 () aly) ay
- LG (27)

C ' b/2
to u/ 7=(y) yody
0

Values of K may be obtained from the information given in references 9
and 10. As the aspect ratio tends to zero, K approaches 1/2, whereas
for aspect ratios approaching infinity, K tends to 1. The following
relations can be obtained from elementary definitions and from the
aforementioned reciprocity theorem:

L b/2 cey
=t P

C b/2
Lo o
- f_b/g r(v) aly) ay

b/2 b/2
L =X =
bf-b/e 7p(y) dy bf-b/e () ay =1

b/2 cec
CZ = _.l_

b2 J /2

1
C R
b2

With the aid of these relations the 1lift distributions given by equa-
tion (26) may readily be seen to have the correct 1ift and rolling moment
for all angle-of-attack distributions, and to reduce to the exact 1ift
distributions for angle-of-attack distributions which vary linearly along
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the span. A 1ift distribution which possesses these properties could
readily be obtained by approximating any given angle-of-attack distribu-
tion by a suitably chosen linear one. However, this procedure would
yield poorer approximations than the ones furnished by equation (26);
for a parabolic angle-of-attack distribution on a wing of very small
aspect ratio, for instance, this procedure would yield the 1ift

distribution
Sil = Ay <_X_5§
T 2 b/2

with a bending moment too low by 17 percent compared with the one of the
exact lift distributiocn,

b/2

W

ce 2 2
i oAb L (_X_) 1 + 2(42_>
c

whereas equation (26) yields

et G L)

with a bending moment 8 percent too high. For very large aspect ratios,
7p and g Dboth tend to the chord distribution c/E, so that the 1lift

distributions given by equation (26) tend to the correct limiting value,

CCZ
e = Cy
C/A 5w @

Therefore the accuracy of the results furnished by equation (26) may be
expected to increase as the agpect ratio increases, whereas the accuracy
of the other approximation is independent of aspect ratio.

o8 (28)

olio

In this connection, it may be mentioned that "strip theory" consists
in using equation (28) for all aspect ratios and, hence, is not very
satisfactory for wings with medium and low aspect ratios. For instance,
for the case discussed in the preceding paragraph, it furnishes a bending
moment which is too low by 25 percent for a delta wing, and too high by
25 to 100 percent for tapered wings. (The two figures pertain to taper
ratios of 1/4 and 1, respectively.)

Substituting the value for o from equation (27) into equation (26)
gives the following expression for ch/E:

ooy 1y P2

¢ b -b/2

{l}D(y) - K g(y) + vK S(y-n)] 7R(n)} a(n) dn
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The expression in braces in the integrand is the desired generalized
aerodynamic influence function and will be designated by G(y,n), so that

6(y,m) = [rp(s) = Kogly) + o o(y-n)| 7g(n) (29)
and
o % 0P e
L2 f_b/2 (y,m) o(n) ay (30)

In the limiting cases of wings of very low or very high aspect ratio,
7D and 7R approach a common value, say 7. Thus, for wings of very

low aspect ratio,
6(y,m) = 2[r(v) + v 8(y-n)] #(n) (51a)

where 5 is the Dirac delta (unit-impulse) function, and for wings of
very high aspect ratio,

G(y,n) = 8(y-n) 7(n) (31b)

which 1s the Green's function associated with strip theory. Thus, on
wings of very high aspect ratio all the 1ift produced by the local angle
of attack at a given station is carried in the immediate vicinity of
that station, whereas on wings of very low aspect ratio much of the 1lift
is carried elsewhere. Thls tendency for a given station to affect a
greater portion of the wing as the span decreases is, of course, to be
expected.

The preceding analysis can be applied to the oscillatory case at
a given reduced frequency k, as well as to the steady case. If the
assumption of invariance of normalized distributions with time or fre-
quency is made, as before, then yp(y), 7g(y), and K are independent

of frequency, so that equation (30) can be written as

2

C; (k) a8 .v/e
Uysk) = -8 f &(y,n) aln) dn (32a)
b -b/2

where G(y,n), defined as before, is independent of k. By applying a
Fourier transformation to both sides of this equation the following
relation is then obtalned for flight through continuously varying tur-
bulen?e)(cf. eq. (4)), as modified by therassumption stated in equa-
tion (5):
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-b/2

o b/2
_ w0 =& [ ey e k[ S (I (e n) an - Ga)

where Z(y,t) is the 1lift per unit span at station y and time t, and
where the function hL(t) is the one used previously.

The correlation function for this 1ift can then be written as

b/2 Ab/2 5 5 5
Wl(y)(-r = __f [ hp(t1) by (tp) &by dt2 f G(y,my) 6(¥s1p) ¥y \IU (T+tl-t2) +(Mp-p) )dnl dn,
-bf2J /2
JF(”M/‘ by, (b)) by(tp) Aty dby ¥, (U(T+e1t5),Y) (332)

where the function

v, (UT:Y = "—f f YJT]]_ G(Y} Tlg) Ww<\J'Ui2T2+(T]2'n]_)2> dny dn,

represents an effective correlation function, which when transformed into
> the equivalent power spectrum Py (w,y) can be used to obtain the power
€

spectrum for U(y,t) and hence its mean-square value. Thus

c
- Ly,
Pi(y) (@) = bl.e( U

Before the calculation of @, (w,y) is discussed, the function
Ve

2
qs> 1#00) |0, (.1 (330)

wwe(UT,y)' will be defined in a somewhat more general form than in the

preceding paragraph in order to anticipate future needs, namely

b/2
L2 (UT;Yl,Yg) E'lhq[\ / Jf G(y 51 ) G(y | ) s <QU2T2+(n -7 >2> dn, dy
We b2 -b/2 —b/2 1741 2:'2) Yy 2 11 172

If the assumption is now made that 7R(y) and 7D(y) are the same, as

is the case for all unswept wings and for wings of very low or very high
aspect ratio, they can both be 1dent1f1ed with the function 7(y used
previously, so that

G(y,n) = [(l - K) 7(y) + vK B(y—n)] 7(n) (34)
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and

2
Ve (UT;Yl)ye) ) {(l = 1IIW’e(UT) + K1 - X) wwe*(UT’yl) *

Vi * (U7,¥, ):I + KEWW(VU2T2+(Y2‘Y]_)2 )} 7(Y1) 7(Y2)

where wwe(UT) is the correlation function calculated previously for

the averaged vertical component of turbulence, and where

by x(Ury) = %f_:i 7(n) WW(dUETE+(y-n)2) an

Similarly, then,

Py (©571575) = {(l - K)E(pwe(w) + K(1 - K)] Py *(@5¥q) +

2 ~
@We*(w,yg)] + K @w(w,yg-yl)} 7(¥1) 7(¥2) (35)
where @we*(w,y) is the Fourier transform of wwe*(UT,y), so that
) b/2 N
Bgx(oy) =2 [ () Byl |yn]) an (56)
-b/2
and thus represents an averaged form of the spectrum $w introduced

previously. (See egs. (16) and (19).) For uniform spanwise loading and
the point correlation function used previously, this function is

_ %21 1 2. .
mwe*(w,y) i ( 2)5/2 {5k [%lO(al) + Klo(ae) -
1+ k'

1 (o) - o Fo(ee]] * [ (o) * s (e2))

ty
" 2
_ 1
81,8, = ¥ 1L +k

and is shown in figure 4 for several values of L§l.
b/2

where

o’
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The more restricted form of @We required in eguation (55b) can

now be obtained from the more general form given in equation (35) by
setting Yo =Yy =Y in the latter, to yield

Py (@) = [(1 - K)gcpwe(w) + 2K(L - K) 9y x(w,y) + K%W(wﬂ #ly)  (37)

Mean-Square Bending and Pitching Moments

When the variation of the gust intensity along the span is taken

into account, the mean~square Llift I2 is not an adequate index of the
stresses in the wing, nor can the stresses be obtained from the mean-

square Llift distribution Zg(y). Instead, the mean-square bending and
twisting moments, as well as the mean~square vertical shear, must be
calculated directly.

In a manner analogous to that employed for the 1ift and rolling
moment, each of these quantities can be expressed in terms of a certain
influence function which, by means of the reciprocity theorem, can be
related to a 1ift distribution on the wing in reverse flow. For instance,
for the root bending moment the desired 1lift distribution is the one for
an angle of attack which is zero on one wing and proportional to y on
the other, as may be seen from the fact that the bending moment can be
expressed as

b/2
Mg =f—b/2 [Z(.Y)_.]a(y) f(y) dy

where

£(y)

£(y)

0 (y <0)

y (y 2 0)

so that, according to the reciprocity theory for unswept wings in steady
or indicial flow,

b/2 ‘
Mp =f_b/2 [l(y)]f(y) o(y) dy

Similarly, for the root shear the required 1lift distribution corresponds
to an angle of attack which is zero on one wing and uniform on the other.
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Such 1lift distributions can be calculated readily. For instance,
for subsonic flow and unswept wings they can be obtained from those given
in reference 10; the 1ift distribution for the root bending moment is
one~half the sum of a linear symmetric and linear antisymmetric 1lift
distribution, and the 1lift distribution for the root shear is one-half
the sum of a lift distribution due to a uniform angle of attack and a
1lift distribution due to deflection of a full-span aileron.

However, in some cases such calculations may be time-consuming,
and an alternative approach may be desirable. One such approach consists
in synthesizing the desired influence function from the generalized 1lift-
influence (Green's) function discussed in the preceding section. In
order to illustrate the use of this approach, it is adopted in this
section.

The bending moment at any station y (O <y < %) and at any

time 1+t can be obtained from the lift distribution considered in the
preceding section as

b/2
MB(Y}t)‘=Jf (y' -y) Uy',t) ay'
y
1 b/2 <) L b/2
) gu[; ' - ) dy'h/:m by (t1) % gb/:b/g G(y*,n) w(U(t-t1)n)an

0 b/2 ~
%f_ hy (%) dtlf M(y,n) w(U(t-tl),n) dn (38)

o -b/2

where the influence function for the bending moment is

M(.Y;ﬂ) =1

b/2
b\/h (v' -y) aly',n) ay' (39a)

y

so that, upon introducing the previously used function for G(y,n)

My, m) = [(1 - 0 My(y) + Ky, m)] 7 (n) (590)
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where
1 b/2
My (y) = —f (y' -y) 2(y") &'

My(y,n) =1 -y (n>y)

A

Mg(y,-n) =0 (T] ¥)

and, hence, for the root bending moment,

b/2
= _]__ 1 1 1
3(0) bfo 'yt ay
M5(0,1) =7 (n>0)
Mp(0,n) =0 (ngo)

Hence, the correlation function for the root bending moment is

g, (T) -f f By (t1) br(tp) by dty b/efb/E {(1 - K)ZMlE(y)

-b/2

k(1 - X) Ml(O)[M2(O,T]l) + Mz(o,ng)] +

KEMQ(O,ﬂl) ME(O,ng)}7(nl) 7("2) IVWNUE(Tthl-tE)ﬂ (ﬂg-nl>2) dny dn,
(ko)

The approach used in the preceding sections can now be used to obtain the
power spectrum of the root bending moment by evaluating the inner pair of
integrals of equation (40), taking the Fourier transform of the result
with respect to T, and multiplying the power spectrum obtained in this

CLaqS 2 5
manner by T l¢(k)| or by using one of the alternative approaches

indicated for the lift.
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The spectrum corresponding to the inner palr of integrals is, for
K =1 and uniform loading,

) - —EE oo i) e ) &)
7UB (l+k' )

k'gl:B'BKiOGZ—') + (61 -6p9) - 88'2Ko<%) - (sea' - %) Ki(%)

where B' = Bﬂl + k’2, as before.

The integral of this spectrum is

) 3 _
\lfwe"(o) = :—QEK-% + -82—) + e B/ (24 + 12p + BBgi\

Examination of wwen(O) indicates that, although the mean-square bending

moment tends to decrease as the span increases, it decreases less rapidly

than the mean-square 1ift, with the result that the effective lateral

center of pressure moves outboard. Quantitatively, the distance from the -
plane of symmetry to the effective lateral center of pressure can be

defined as the square root of the ratio of the mean-square root bending

moment to the mean square of the 1ift on one wing, that is, of the root

shear. Although these mean squares have not been calculated, the square

root of the ratio of wwen(o) to the corresponding value for the root

shear increases by 15.5 percent as $ increases from O to infinity, with
much of the increase realized at fairly small values of B.

For a swept wing the variation of the gust intensity along the span
results in a pitching moment which must be taken into account in calcu-
lations of the dynamic response of the airplane to continuous turbulence.
This pitching moment can be obtained in substantially the same manner
as the bending moment. Thus, if ¥ 1is the station of the mean aero-
dynamic chord,

b/2
M) = tenn [ 7 - |y]) Unst) oy

b/2

w b/2
tan A %f_w hr(ty) dtlf_b/e Mz(n) w(U(t-t1),n) an (k1) .
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where

b/2
=1 = _
Mz(n) = bf_b/g 7 - lyl) &ly,n) ay

so that, with the previously used approximation to the Green's function,
Mz(n) = {(l - K)[— - 2M1(0)] + XK(¥ - |n|)} 7(n)

The correlation function, spectrum, and mean-square value of the pitching
moment can then be obtained in the manner used in the preceding sections.

Wing-Tail Correlation Effects

The tall strikes a given gust some time after the wing does; as a
result, a pitching moment arises which does not exist in steady or quasi-
steady motion, nor if the airplane is very small, because then the time
lag is insignificant. This pitching moment can, for the purpose of the
present paper, be analyzed either in terms of the correlation between the
gusts at the wing and those at the tall or, i1f a time-lag term is included
in the indiclal-response function of the tail, in terms of the correlation
between the wing and tail response functions. The first point of view
serves to exhibit the effect under consideration more clearly and is
adopted first; the second is more convenient and 1s adopted in the subse-
quent parts of this report.

In the somewhat artificisl case of a small wing and tall separated by
8 relatively large distance, only the distribution of turbulence along a
line (the flight path) rather than in a portion of a plane is needed.
The pitching moment due to the vertical component of atmospheric furbulence
can then be written as

00

M(t) = f _: hy(t1) w(U(t-tl)) dtq + f ) hy (t7) W(xt+U(t_tl) ) dt.l

vhere x¢ 1s the tail length, and where hy(t) and hg(t) are the

pitching-moment responses to indicial gusts hitting the wing and tail,
respectively, at t = O; both may include unsteady-lift effects, and,
if downwash effects are to be considered, hw(t) should include the

contribution to the pitching moment of the tail 1ift caused by the down-
wash at the tail associated with the 1ift on the wing which results from
the indicial gust.
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The spectrum of this moment can then be written as

- 2R (l - ei%xt) H *(0) Hy(w)p | o, (w)

Pylw) = le(w) + H-t(w)lg

where the symbols I{{ } and * designate, respectively, the real part

and the complex conjugate of a complex number. Obviously, when xy

approaches O the second term in the bracket in this equation vanishes,
so that the first term represents the perfect-correlation effect, and
the second represents the correction for imperfect correlation.

In order to furnish an estimate of the magnitude of the effects
under consideration, some calculations have been made on the basis of
the assumption that a real coefficient p exists such that

Hy(w) = p H(0)

which implies that the attenuation with frequency of the contributions
of the wing lift and tail 1ift, respectively, to the pitching moment is
the same. The ratio p 1s -1 for neutral stability, and p > -1 for
stable flight; it 1s positive when the aerodynamic-center location
(tail off) is behind the center of gravity, so that positive values of
i are not likely to be incurred with normal configurations and flight
conditions.

For this case,
Py(w) = |Ht(<»>|2k1 e w)? -2l - cos ‘%)} @y ()

and

s =(l+u)2-2uglr<x—JE Xt)

(7) o
tail alone

where

© 2
v x| JC |Ht(w)|‘¢w(w) (l - cos 2;3) dw
g’(’r? 2/ =

fom |54 (0)] “P(w)
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The function ¥ has been calculated for several values of its arguments
by means of the lift-attenuation function given in equation (7) and the
point spectrum used in the preceding sections, and is shown in figure 5.
Also shown is the ratio of the mean-square moments as a function of the
factor P which in figure 5 is referred to as Mw/Mt' The effect of

imperfect correlation is seen to be very large as the condition of neutral
stability is approached; the entire pitching moment is then the result
os instantaneous differences in gust intensities at the wing and tail.

In general, however, the tall length and the span are of the same
order of magnitude, so that an analysis of the effect of imperfect corre-
lation between the wing and tail must take into account the averaging
effect of the wing span. The pitching moment at any instant is then

1

o b/2
M(t) = gf_w hw.(tl) dtlfb/e y(y) w(U(t-tl),y) dy +

[24]

f hy (tq) w(xt+U(t—tl),O) dtq (k2a)

Hence, the power spectrum of this moment is

(@) = |E(0)] Zo (@) + |Ep()] “pgle) +

iUiXt
23{8 U " Hi(o) Hw*(w)} Py *(,0) (42p)

where @we(w) is the averaged spectrum of equations (11) and (13), and
wwe*(w,O) is the spectrum of equation (36) for y = 0. (It should be

noted that ht(t) is the response to an indicial response which strikes
the tail at t = 0; if it were the indicial response to a gust which

1Rx
strikes the wing at t = 0, the factor e U™t in the preceding equation
would not be required.)

DYNAMICS OF THE RIGID AIRPLANE

In this part of the report the motions of a rigid ailrplane subjected
to atmospheric disturbances are considered. This part thus applies
directly to those airplanes which fly at relatively low speeds and do
not experience any significant structural deformations, and also serves
as a preliminary to the treatment of the flexible airplane in the later
parts.
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The assumption 1s made that the motions are small enough to permit
the use of linear approximations to the resulting aerodyneamic forces and
to permit the linear superposlition of these forces. The longitudinal
degrees of freedom (pitching, vertical, and horizontal motion) and the
lateral degrees of freedom (yaw, sideslip, and roll) can therefore be
consldered separately. The first two sections of this part are concerned
with the longitudinal motions of a small airplane. The material presented
here 1s thus a generalization of the single-degree-of-freedom analysis
presented in reference 2. Mathematically, the dynamic system is now
described by a set of simultaneous ordinary differential equations rather
than a single one, but the problem of calculating the pertinent transfer
functions is still one of simple algebra. The extension of these results
to the large airplane is effected in the third section, using the tech-
niques developed in the first part of this report. The lateral motions
of a large airplane are considered briefly in the fourth section, and the
combination of the stresses due to longitudinal and lateral motion of a
large airplane is discussed in the fifth section.

Equations of Longitudinal Motion

The equations of motion of an airplane can be expressed in several
coordinate systems. The system which is generally the most convenient
one for analyses of airplane stability and is generally referred to as
stability axes, consists of body-centered exes which are normal and
parallel to the relative ailr velocity and rotate with it as the airplane
pitches or yaws. (See ref. 11, for instence.) The aerodynamic forces
related to this axis system can be measured more readily in wind tunnels
than those related to other axis systems. In view of the very close
relation of a stability analysis to the problem considered here, these
axes will be used in this part of the paper, but in the analysis of the
flexible airplane in the subsequent parts of the report space-centered
axes will be used, because they are slightly more convenient for that

purpose.

The alrplane will be considered to be in steady level flight prior
to disturbance. The motions studied will be the deviations from their
mean values; for instance, the angle & considered here will be the
difference between the disturbed and the initial value of the angle of
pitch. Hence, the motions and forces calculated by the method indicated
here must be added to thelr mean values to obtain the total motions and
forces.

Inasmuch as, for the purpose of a statistical analysis, the dynamic
characteristics of the airplane are represented most conveniently by i1ts
transfer functions, attention will be confined in this section to sinus-
oidal gusts and motions.
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For this case the linearized equations of longitudinal motion can
be written as follows (see egs. II-193 of ref. 11, for instance):

i - 2, Ty U | Wp [Zer Zg| W
X, iw - Xy g up ¢ o= @(k)|Xy Xyl |u (43)
~iaMe - M, =My =0 - daMg| | © M, My

The stability derivatives which appear in these equations are defined
in table 1 in terms of conventional aerodynamic coefficients, and the
numerical values are given for the example used in reference 11. (The
value of the mean chord is not given in ref. 11 but it is assumed herein
to be 10 feet on the basis of other information given in ref. 11.)

In snalyses of the stability of a rigid airplane the quasi-steady
approximation to unsteady-1ift effects is usually made, in which, in
effect, the forces corresponding to a steady attitude, to constant dis-
turbance velocities, and to constant accelerations are considered. This
approximation is justified because the motions of concern are generally
sufficiently slow. For the same reason this approximation can also be
made in analyzing the response of an airplane to atmospheric turbulence.

However, in thils problem another type of unsteady-lift effect occurs,
namely, that related to the forces directly attributable to the turbu-
lence. This effect is here taken into account by multiplying the quasi-
steady values of the forces due to gusts on the right side of equa-
tion (43) by the attenuation function @(k). This procedure implies the
assumption that the airplane is small relative to the scale of turbulence,
inasmuch as no averaging effects have been taken into account; these
effects will be discussed presently. Also, this attenuation function is
strictly applicable only to the normal forces.

The unsteady effects on the drag are not known because of the rela-
tively complicated nature of the mechanism which gives rise to drag. If,
however, the assumption is made that upon entry into a sharp-edge gust
the drag rises linearly and attains its steady-state value in the time

requlred to travel N chord lengths, the drag equivalent of |¢(k)|2
is the function

1l - cos 2Nk

ONZKE

which, for N equal to about 5 or 6, agrees fairly well with |¢(k)l2
in the region of main interest (k > 1).




ho NACA TN 3910

The unsteady moment is also difficult to predict because of the
paucity of knowledge concerning unsteady downwash effects for wings of
finite span. However, inasmuch as the wing 1lift contributes part of
the moment and, through the mechanism of downwash, determines to a large
extent the moment contributed by the tall, the use of the 1ift attenu-
ation function for the moment appears reascnable for a first approxima-
tion, and the use of the same function for the 1lift, drag, and moment
facilitates the analysis.

For a more refined analysis, the time lag between the instants at
which the gust hits the wing and the tail must be taken into account,
not only for large airplanes, but even for small airplanes if phugoid
motions are important. (See ref. 12.) Also, the lag in downwash should
be taken into account for large airplanes and possibly also for small
airplanes in some cases. One way of achieving this result is indicated
in the next part of the present paper; another is discussed in refer-
ence 12.

In equation (h5) the unknown quantities Wp and u, are the normal

and axial components of the disturbance velocities of the airplane rela-
tive to the free stream. Inasmuch as the coordinate axes rotate during
the motion, the time derivatives of these quantities do not represent
the actual airplane accelerations, which are required in analyses of the
loads experienced by the airplane and the degree of passenger discomfort.
If the deviations from a mean flight path are assumed to be small, the
accelerations normal and parallel to the chord or longitudinal axis of
the airplane are substantially the same as the absolute vertical and
horizontal accelerations z and ¥, which can be obtained from the
relations

z = -wp + U8
X = -Uy - b

The transfer functions for these quantities can then be obtained by
introducing these relations into equation (43).

In studies of the longitudinal stability of airplanes, equation (43)
is rarely solved in the form given here. It is usually reduced to two
equations with two unknowns, either up eand 6 (the phugoid case) or

wp and 0 (the short-period case), the short-period case being usually

the one of primary interest. The part of the turbulent energy contained
in the frequency range near the phugoid frequency is relatively small,
so that the phugoid case has no significance for the analysis of loads
and accelerations resulting from atmospheric turbulence. Hence, the
short-period case, which ignores the phugoid oscillations, furnishes an
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excellent approximation to the loads and accelerations associated with
the longitudinal motions of an airplane in turbulent air. However,
another two-degree-of-freedom case, the one involving wp and up, is

useful in certain studies of the effects related to the interaction of
horizontal and vertical components of turbulence.

Both of these two-degree cases can be reduced to the single-degree-
of-freedom case involving only =z (or Wp) - For airplanes which have

a large moment of inertia in pitch this simple case furnishes a good
approximation. It has been studied in reference 2, where substantially
the same approximations to the unsteady-~lift effects were made as are
made here, except that in reference 2 apparent-mass effects were included
(These effects are not included in the stability derivatives used in
equation (43) because they are usually small - less than 1 percent of

the mass of the airplane - and are different for each degree of freedom.
However, if desired, the apparent mass pertaining to a given degree of
freedom can easily be added to the airplane mass in calculating the
stability derivatives.) However, this approximation is more nearly valid
for calculating peak loads persuant to an entry into a sharp-edge gust
than for calculating the response due to random turbulence. Consequently,
in the following sections, attention will be confined to the short-period
case, although the analysis is equally applicable to the other case and
easily extended to the case of three degrees of freedom.

Solution of the Equations of Longitudinal Motion

Iransfer functions.- If the degree of freedom pertaining to x
(or up) is ignored, the solution of equation (43) can be written as

Z Hg(w) H%(w) W
e B W u (44)
e Hg(w) Hg(w) u
where the transfer function Hi(w) is defined by
AT 2 e v
Hg(w) _ ¢(k) Aiw + BZLw + CZ (45)

"Ao(k) + Boi(l) + Co

where, in turn, the coefficients are defined in terms of the stability
derivatives (see table 1) by
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Ap =1 Ay = =Dy’
Bg = -(ZW+Mq+UMV}) By = Z,' (UM + Mq)
Co = MgZy - Wy of = o, 'z, - M2y

The transfer function Hg(m) can be defined similarly in terms of the

coefficients
B = M 2y My
W o_ 1 1
By = (M 'Zy - MyZy')
W
Cé-—-O

In these equations a distinction has been made between the values of Zy
and My which occur on the right side of equation (43) and are here
designated by a prime mark, and those on the left side of that equation.
The primed derivatives pertain to the 1lift and moment directly due to
gusts, whereas the unprimed derivatives pertain to the 1lift and moment
due to airplane motion; the reason for this distinction is discussed in

u u u u u
a later section. Furthermore, the coefficients Ay, By, Ci, Ay, By,

u
and Cy are the same as the coefficients Ag, Bg, . . . except that

Zogs oy’ s My, and M,' are replaced by Zy; Z,', My, end M,'.

With these transfer functions the mean-square values of 7z and §
can be calculated from the spectra of w and u by using equation (l),
provided that the simultaneous action of w and u 1s taken into
account. In order to analyze this effect the vertical acceleration Z
will be considered, but the analysis will be applicable to 6§ or any
other characteristic of the airplane which responds to w and u.
Furthermore, the transfer functions need not be those considered in
equation (hh), but can be those calculated for the three-degree-of-
freedom system or for a flexible airplane.

Normal-acceleration spectrum and mean-square value.~- For the present

W
purpose the indicial-response functions hy(t) and hg(t), which are the
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Fourier transforms of the transfer functions (see eq. (3a)), are more
convenient. In terms of these indiclal-response functions,

o0

%(t) =f-: ng (b1)w (U(t-t1) ) aty +f hy (t1) w(U(t-ty)) aty

w00

Then, if w(t) and u(t) are stationary in a statistical sense, the
correlation function for Z(t) can be written as

¥ () =f _: f _: Elz (b1) BE (t2) ¥ (U(retr-t2)) + B (1) B (t2) ¥u(U(r+ti-tg)) +
nE (t1) B (b2) Weu(U(m+1-2)) + 13 (b1) BE(t2) \lfwu(U(—Htl—tg))] at, dtp (46)

where V. (UT) 1is a cross correlation of w and u defined by

¥, (UT) = wlxaUt) u(x+U(t+r))

Now, 1f the turbulence is isotropic, the mutually perpendicular
velocity components u and w at points 1In the XY-plane are statis-
tically independent, and their cross correlation is zero. Therefore,
the two terms in equation (46) involving 1., (UT) vanish, and the power

spectrun of %z is

o) = [E(0)] 2y(0) + |Bi@)] 0 () (47)

so that, generally speaking, the power spectrum of a response which
depends on both the horizontal and the vertical component of turbulence

is simply the sum of the power spectra of the two contributions, provided
the turbulence is isotropic. (This statement can be shown to be true

even if the distribution of the gusts over the span is taken into account.)

For the short-period two-degree-of-freedom case, then, the contribution
due to w 1is

2= [ sl () - ot - )]+ (@)
0

w" - (QCO - B02>w2 + 002

P(w0) dw

and the contribution due to u can be obtained from the same expression,
but with the subscript and superscript w replaced by u. However, the

ratio of the two contributions is in the order of ha?, where o 1is the
trim angle of attack in radians, measured from the zero-lift conditions.
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Consequently, except at very high 1lift coefficients, such as those used
in landing, the contribution due to wu is usually negligible compared
with the one due to w and is disregarded in subsequent sections.

By means of the lift-attentuation function given in equation (7)
and the point spectrum used in the first part of the paper, the inte-

gral for Z2 has been evaluated (by using the technique of partial
fractions for the integrand) for the example of reference 11. (The
lift-attenuation function of equation (7) has been used despite its
shortcomings in order to facilitate the analytic integration of the
spectra.) The results are shown in figure 6, as are the results calcu-
lated similarly for the three-degree-of-freedom case, the other two-
degree-of-freedom case (horizontal and vertical motion; referred to in
the figure as the zero-pitch approximation), and the single-degree-of-
freedom case (vertical motion). An examination of this figure indicates
that, at least for this airplane, inclusion of horizontal motions does
not affect the mean-square normal-acceleration response to any significant
extent. These calculations pertain to a "small" airplane, and no dis-
tinction has been made between the primed and unprimed values of Zy

and M;.

The preceding treatment of the short-period case has the advantage
of using readily available information concerning the characteristics of
any given airplane. For the purpose of trend studies a dimensionless
form of the transfer functions is preferable. The preceding equation

for %° can be written in dimensionless form (the contribution of

horizontal gusts again being neglected) as

- - Ly 1 2 2
ZE ) < U2 >2 Eg ﬂ; |¢(k)|2 kKT + M(v - E) k U @W(w) !
2 = 2 .2 2
e? \ee/e) u=x2Jo K 2(ko2 - vB) K2+ (k24 42)° AP
(48a)
and, similarly,
2 2 —> 2 e ©
o . (ﬁ) E_z[(v - 2)2 + kozi\ f | d(x)| 2 i . U m‘i )
(egfc)® \eo/e) v2Lb ° - o2 - V)P 4 (1,2 #V2)T T
(48b)
where Kk 1s the mass parameter
8m

K E ——m —
CLapSE
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v is the dimensionless damping coefficient

VE.E_E%Q_E.

2U Tl/2
Tl/2 is the time to damp to one-half amplitude, which is given by

log, 2

Ty /o - -%(Zw+Mq+UM‘;f>

so that

2 Cp. +C
V=_1_<1_.1_mc 79 md)
1 C
2 Ly Lo,

and ko is the dimensionless fregquency of the short-period oscillations,

@nLC
o= 3
with
a>o=\JMqu—UMW—l%(Zw+Mq+UM‘;,)2
so that

# |

' ——
K = _;rﬁQgC‘_“&+2_Cﬂ>_(_;m62Cmq+Cma>
T\ L ‘e 21y O

Thus, for this two-degree-of-freedom case the dimensionless mean-
square responses are functions of only two additional parameters, which
are dimensionless forms of the main characteristics of the short-period
case (the short-period frequency asnd the time to damp to one-half ampli-
tude), beyond those encountered in the single-degree-of-freedom case,

*
namely, the mass parameter & and the scale parameter s = %75.
¢

Bending-moment spectrum and mean-square value.- For a small airplane
the instantaneous bending moments at various points on the span are
proportional to the instantaneous normal acceleration. For instance,
the root bending moment can be written as

z (49a)

<l
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where I, and my; are, respectively, the 1lift on and the mass of the

wing, and where ¥ and ¥ are the lateral distances to the center of
pressure of the 1ift on one wing and the center of gravity of the mass
of one wing. However, L, 1is proportional to the lift L on the entire

airplene, which in turn is proportional to the normal acceleration, so
that

and

<l

- [

Hence, the spectrum and mean-square value of Mp are proportional to the
spectrum and mean-square value of Zz, respectively, the constant of
proportionality being the square of the quantity in the brackets of
equation (L9b).

- ?)J ‘7: (49p)

Special Problems Related to the Longitudinal Motion
of Large Airplanes

Single-degree-of -freedom case.- In the preceding sections the air-
plane has been assumed to be small in the sense of this report, and
neither the instantaneous lateral variation of the intensity of turbulence
nor the difference between the instantaneous intensities at the wing and
the tall has been taken into account. In this section this restriction
is removed by introducing the aerodynamic forces calculated in the first
part of this report into the dynamic analysis of the preceding sections.
The arguments advanced in the preceding section for ignoring horizontsal
gusts and horizontal motions are equally valid for the large airplane;
therefore these gusts and motions will not be considered here.

For the single-degree~of-freedom case involving only vertical motion
the required modification for the normal acceleration is very simple.
For this case the transfer function is

o) = plx) 2 (50)
“(w) = ~@(k) . 0
&’ 1w = Zyy 2
where ZW', attenuated by ¢(k), is the stability derivative for vertical

gusts and, hence, represents the 1lift per unit gust intensity. Therefore,
if the result for the 1lift calculated in the first part of this report
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is used, the mean-square normal acceleration becames
— © 22
. 2 W
22 =f | 4] —2”’——————2- Py (@) doo
0 W= + Zy

(The function @We(w) is defined in the first part of this report.)

This expression differs from the result cbtained in reference 2 only in
that @, (w) is here replaced by @we(w).

However, even for the single-degree case the calculation of the
bending moment now becomes a considerably more complicated problem,
because the lateral centers of pressure of the lifts due to the motion
of the airplane and directly due to turbulence no longer coincide.
Equation (49a) now becomes

— —

» b/2
%foo hL(tl) dtlfb/g ')’M(Y) W(U(t-tl),y) dy (51)

where CLQ is the lift-curve slope for the entire airplane, hL(t) is
the response function used in equation (38), and yy(y) is the function

ﬁ(y,n) used in equation (58), with y = 0. In the first two terms on
the right side of equation (51), %z and % can be related to w by

means of H; (the Fourier transform of the function Hg presented

in eq. (50)) and the 1ift directly due to turbulence obtained in the first
part of this paper, so that these two terms can be written in the form

°° b/2
%f_m by (1) dtlf_b/2 7(y) W(U(t—tl),y) dy

and, hence, equation (51) becomes

o b/2
Mp(t) = %f_w dt1f~b/2 [hL(tl) m(y) + Dy (ty) '7(y)] w(U(t-ty),7) dy
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The required influence function for the bending moment is, thus,

1
AN
~—

hyp (y,t) = %[hL(t) ym(y) + hy(t) 7(y)] (

Although the two terms of thils function are products of a time-dependent
and a space-dependent constituent, as in equation (5), their sum cannot
be split up in this manner. Hence, the techniques used in the first
part of this paper are not directly applicable. The general treatment
of problems involving influence functions for which the assumption of
equation (5) is not valid will be considered in the last part of this
paper. However, in this section a special technique will be used that
applies to cases for which the influence function can be expressed as a
sum of several terms (two in this case), each of which can be expressed
as a product of two functions, which depend, respectively, on time alone
and distance along the span alone. (See also ref. 13.) This approach
is more convenient than the general approach of the last part of this
report when the number of terms is two or, possibly, three. (Although
in this section only two terms will be considered, the generalization

to three or more terms is straightforward.) When the number of terms

is greater than three, the general approach becomes more convenient.

If the value of MB given by equation (52) for t+ 1 is multi-
plied by the value for +t and the result is averaged, and if the Fourier
transform of the resultant correlation function is then taken, the fol-
lowing expression is obtained for the spectrum of the bending moment:

(@) = |7 0)| By, (o) + [y |0, (@) + 8 {(0) BEW)] o, () (51)

where the symbols R{ } and * designate, respectively, the real part
and the complex conjugate of a complex number. In this equation HM(w)
and Hp(w) are the Fourier transforms of hy(t) and hr(t), ¢We(w)

is the previously defined averaged spectrum for the 1lift, and @We
1
and @Weg are averaged spectra obtained in a similar manner but with

the value of T given by equation (12) replaced by

(b/2)-n )
r'(n) %f-b/e 7(v) my (y+n) &y

r (55)

1

o (®/2)-n
T =4
=2 o [P m ) ) o] o
where the subscripts s and a refer to the symmetric and antisymmetric
parts of yy, respectively.
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The contribution of the antisymmetric part of yy to I's and,

hence, to the spectrum for the bending moment stems basically from the
asymmetry of the instantaneous distribution of gust intensity over the
span. This asymmetry gives rise to a rolling moment (which was consid-
ered in the first part of this report) and, hence, to rolling motions,
which contribute additional bending moments due to the aerodynamic and
inertia loads associated with these motions. If, for the purpose of
calculating the bending moment due to symmetric flight through turbulent
air alone, these motions are disregarded, then the contribution of 7y

to F2 should be disregarded as well. The problem of combined symmetric
and antisymmetric motion will be considered presently.

As pointed out in reference 13, the mean-square bending moment calcu=-
lated in this manner may be smaller or greater than the value calculated
by ignoring spanwise variations in gust intensity. If the mass of the
airplane is almost entirely contained in the fuselage, the decrease in
the 1lift which results from taking these variations into account causes
a decrease in bending moment. However, if most of the mass is in the
wing, the net bending moments (aerodynamic less inertia) for a uniform
spanwise gust are very small, and the effect of taking spanwise variations
of gust intensity into account is to increase the mean-square bending
moments.

Two-degree-of -freedom casge.- For the two-degree-of-freedom (short-
period) case the analysis given for the normal acceleration in the pre-
ceding section can be extended as follows: As indicated in equation (L&)
the transfer function for % is now .

e + (UMW+Mq)ia)+UM‘;|

W w = -— .1‘_ mi - t

HZ( : m wF Boiw + Cg (ZW ) ¢(k) i
1 U(_ZW) 1 6
Ty« + Byin + Cg Tt 90) )

(Ihe following analysis can be applied equally well to 5 by using

W ) PR
H@(w) instead of Hi(w))

If the expressions inside the brackets of equation (56) are desig-
nated, respectively, by Hj(w) and Hp(w), and their Fourier transforms

by hy(t) and hy(t), then, as a result of the definitions of Z,'
and M;',

[ve]

Z(t) =‘/ﬂ~m hy (tq) Lt=ty) dty +f ho (t1) M{t-ty) dty (57)

w00




52 NACA TN 3910

where L(t) and M(t) are the instantaneous 1lift and pitching moment
due to the vertical component of atmospheric turbulence, which have been
obtained in the first part of this report. The calculation of @i(w)

or of 22 thus requires not only the spectra of L and M, the calcu-
lation of which has been discussed, but also the cross spectrum of L
and M, which has to be calculated directly from equations (L) and (L42a).
The result is

030) = [1,00)] B0} g 0 + (1000|100 ) +
{5

|2 (0)] o) + 2R By (o) m*(w)}cpwe*w,o)] -

E[R {Hl(w) Hy*(w) H(w) Hw""(a))}CPWe(w) +

R{m ) 54w ) 52w ) %e*m,o)] (58)

where the first two terms represent the contributions of the spectra
of L and M, respectively (see egs. (14) and (42b)), and the third
represents the contribution of the cross spectrum of L and M. For
the present purpose the functions H(w), Hy(w), and Hi(w) can be
expressed as

Hw) = n(-2y) #(k)
i (o)
H (w)

m Axg ('ZW) P(x)
[IyyMw - m Axg (-ZW)] #(x)

where Axy 1s the distance from the aerodynamic center (tail off) to

the airplane center of gravity. This definition of the contributions of
the wing and tail to the pltching moment 1s based on the considerations
that the direct contribution of the wing can be estimated with good
accuracy and the total pitching moment is likely to be known from experi-
ments, so that the contribution of the tail (which includes the effect

of the wing lift on the downwash at the tail) can be determined as the
difference of the two. The functions @We(w) and mwe*(w,O) have been

defined in the first part of this report. In view of the fact that the
function @(k) contained in some of the terms of equation (58) always
appears in terms multiplled by others which contain ¢*(k), only the
absolute square of this function is required, as before.
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Special Problems Related to the Lateral Motion of
Large Airplanes

The equations of motion in the lateral degrees of freedom (roll,
yaw, sideslip) have the same form and can be solved in the same way as
the equations for the longitudinal motion. (See pp. ITI-53 to III-67
of ref. 11.) Again it is convenient to cast the problem in the form
used in a stability analysis in order to take advantage of the results
of such an analysis. For a small airplane it is necessary only to
replace the terms due to rudder deflection by corresponding terms involving
side gusts, namely,

YgR 5 by Yy % @' (k)

Ipg 8g OV I % g (k)

v 1

NﬁR 8 by Ny ﬁ¢ (k)
where @'(k) is a suitable side-force attenuation function for side
gusts and the notation of reference 11 is used for the other terms.
The terms corresponding to aileron deflection can be disregarded for
the small airplane. In the lateral degrees of freedom the small airplane
thus reacts only to side gusts. On the other hand, the large airplane
also reacts in the lateral degrees of freedom to vertical gusts through
the rolling moment calculated in the first part of the present paper.
If this rolling moment is to be included, it replaces the term LSA Op

used in reference 1l.

Instead of treating all three degrees of freedom simultaneously,
in stability analyses two one-degree-of-freedom cases are often consid-
ered, namely, the one of sideslip alone, with angle of yaw equal and
opposite to angle of sideslip (the Dutch roll case), and the one of
rolling alone.

The Dutch roll case may be used for gust-load purposes in connection
with yawing and sideslipping motion due to lateral gusts, provided the
phase of the motion is not important. (As may be noted from the preceding
sections, the phase of a transfer function is important only in terms
involving cross spectra.) Also, the Dutch roll case may prove useful
in calculating the vertical-tail loads resulting from flight through
turbulent air, particularly if the human or automatic pilot holds the
wings substantially level by means of the ailerons. However, in general
it does not appear to be as satisfactory en approximation as the one-
and two-degree-of -freedom approximations for longitudinal motion.
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For rolling motions due to rolling moments, the single-degree case
of rolling alone appears to furnish a very good approximation. Although
the rolling motion causes yawing and sideslipping motions, these motions
do not appear to reflect on the rolling motion. Thus, the rolling motion
which results from the rolling moment can probably be calculated fairly
accurately without regard to the other lateral degrees of freedom.
Furthermore, within the assumption of small motions, the stresses asso-
ciated with these other lateral degrees of freedom do not generally
contribute appreciably to those associated with the longitudinal degrees
of freedom in the parts of the structure for which the latter are critical,
such as the wing (although they may be critical for other parts of the
structure, such as the vertical tail). Therefore these degrees of freedom
(yaw and sideslip) will be ignored in the treatment of the large flexible
airplane in the last part of this paper. However, if chordwise bending
effects (deformations parallel to the chord) are important, as they may
be in some cases at speeds close to the flutter speed, these other lateral
degrees of freedom may have to be included in the analysis.

For the large airplane, which responds in the lateral degrees of
freedom both to vertical gusts and to slde gusts, the superposition of
the resulting responses, such as stresses, may be effected in the way
indicated for the interaction of horizontal and vertical gusts. If the
turbulence is isotropic, the vertical and lateral gusts are statistically
independent for points in the XY-plane, so that the spectrum of a given
response is equal tc the sum of the spectrum of that part of the given
response which is due to vertical gusts and the spectrum of that part of
the response which is due to lateral gusts.

Combination of the Results Obtained From Analyses of the
Longitudinal and Lateral Degrees of Freedom

The instantaneous wing stresses depend both on the motions in the
longitudinal degrees of freedom (primarily vertical motion and pitching)
and on those in the lateral degrees of freedom (primarily rolling). The
purpose of this section is to indicate how the stresses associated with
vertical motion and pitching can be combined with those associated with
rolling due to vertical gusts, particularly in the case of a large rigid
airplane. (A small airplane, flexible or rigid, does not roll as a
result of the action of vertical gusts, and for the large flexible air-
plane it 1s more convenient to consider rolling motion simultaneously
with the other motions, so that the superposition is effected automatically
in the process of obtaining the required transfer functions.) For all
alrplanes the effect of side gusts can then be taken into account, if
isotropy is assumed, by adding the stress spectra directly.
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In this section the instantaneous stress at a given part of the
wing will be assumed to be proportional to the instantaneous bending
moment at that section of the wing, so that consideration can be confined
to this bending moment; also, the airplane will be consldered to be free
to move in only two degrees of freedom, namely, vertical motion and
rolling. The extension of the following arguments to stresses which
depend on the vertical shear and the torque as well, and the inclusion
of pitching as an additional degree of freedom, can be effected readily
and will not alter the conclusion reached here.

When rolling motions of the airplane are taken into account, the

bending moment due to the aerodynamic forces assoclated with rate of roll

and to the inertia load associated with rolling acceleration can be
expressed in terms of the rolling moment by a superposition integral.

In turn, the rolling moment can be expressed in terms of a superposition
integral involving the instantaneous gust intensities along the span,
the influence function 7'(y) used in the first part of the paper, and
an associated response function hﬁ(t). Hence, equation (52) is modi-

fied by the inclusion of a third term and beccmes

o b/2
Mp(t) =\/\_°° dtl~/1b/e [hL(tl) ly) + Iy (1) y(y) + by (1) 7'(yileU(t-tl),y) dy

If the spectrum for Mp 1s now calculated in the manner used pre-
viously, the following result is obtained:

@) = [ 0], () o) P (o) + 28 {ip(o) o) | (o) +
‘Hﬁ(w)lgwwei(w) + 2R {HL(w) Hﬁ*(w)} @Weu(w) (59)

t . . H ‘
where Hy(w) 1is the Fourier transform of hy(t), and where P (w)

and @weu(w) can be obtained from equation (12) with the following values

of P5 and Fh’ respectively:

I

(0/2)-n
2 , '
r3(n) El/ib/g 7' (y) 7' (y+n) ay

(b/2)-n
Jf 7' (y) 7y (y+n) ay
-b/2 &

I

oo

Iy (n)
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The function T.(7n) is four times the function I''(n) considered
3\ M n

previously in connection with the rolling moment. This factor of four
must be taken into account in hﬁ(t).)

The spectrum ¢MB may be considered to consist of two parts: The

terms listed in the first line of equation (59), but excluding the con-
tribution of ™ to @We (see eq. (55)), represent the contribution
8 2

of the symmetric parts of the instantaneous gust distributions or the

contribution associated with symmetric motion; the terms on the second

line and the contribution of ™ to wWe represent the contribution
a 2

of the antisymmetric parts of the instantaneous gust distributions or
the contribution associated with rolling motion. Therefore, the power
spectrum of the stress due to gusts and combined symmetric and rolling
motion resulting from the gusts is the sum of the two power spectra
(that for the gusts and symmetric motion alone and that for the gusts
and rolling motion alone), provided the direct contribution of the gusts
is split up into a symmetric and antisymmetric part and each is taken
into account only once, in connection with the appropriate type of motion.
The cross-correlation terms between the symmetric and antisymmetric con-
tributions to the stress can be shown to involve integrals which contain
products of symmetric and antisymmetric influence functions and, hence,
vanish, so that the cross correlations are zero; hence, the two parts

of the combined spectrum are statistically independent and, therefore,
directly additive.

DYNAMICS OF THE SMALL FLEXTBLE AIRPIANE

The purpose of this part of the paper is to consider the transfer
functions relating the stresses at various points of a small flexible
airplane to the vertical gusts which cause them. The longitudinal and
lateral degrees of freedom are still separable, and only the longitudinal
degrees will be considered; the lateral degrees, which are involved in
analysis of the response to side gusts acting on the vertical tail, can
be analyzed in the same way. Therefore, for this case only one-half of
the wing need be considered as a result of the symmetry (or antisymmetry,
in the case of the lateral degrees of freedom) of the problem.

The method which is outlined in this part consists in an extension
of the numerical-integration method of aeroelastic analysis described
in reference 14 to sinusoidal motions of the airplane. This extension
takes into account the facts that the aerodynamic forces now have out-
of -phase as well as in-phase parts and that vertical deflections must
now be calculated separately because the structural deformations can
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no longer be characterized by angle-of-attack changes. Also, the "rigid-
body" degrees of freedom (vertical and pitching motion of the airplane

as a whole and structural deformations of the tail) are now taken into
account.

The result is a set of linear algebraic equations (which serve as
an approximation to the ordinary differential equatlons that characterize
the problem) for the airplane motions and deformations in terms of the
applied aerodynamic forces directly due to gusts. The desired transfer
functions can then be obtained from solutions of these equations at
various frequencies, and the power spectra of the stresses are given by
the product of the absolute square of these transfer functions and the
point power spectrum of the vertical component of turbulence. The same
equations may be used to calculate with little additional effort certain
aeroelastic effects, such as the static aeroelastic deformations and the
flutter speed, which are usually obtalned in separate analyses.

Loads Applied to the Wing

The loads applied to the wing stem from three sources: The aero-
dynamic loads directly due to the action of the gusts, the aerodynamic
loads due to the motions of the airplane, and the inertia loads.

The 1ift and pitching moment (about the elastic axis) per unit span
on a two-dimensional airfoil undergoing sinusoidal angle-of-attack changes
and vertical motions in incompressible flow are (see ref. 15)

lg = 2nqc {c(k) l:(l + 2epik)a - 1k ﬁﬂ + <% - e5k2>cx + 523 ﬁE}
> (60)
mg, = 2rge? {C(k) ellkl + Eehik)a - ik E%é] - [;? ik - <§E + eié>k%]& - %g K2 E%E}

The terms multiplied by C(k) are referred to as the circulatory terms
because they are calculated from the bound and shed vorticity, and the
others are referred to as the potential terms. The potential terms are
in the nature of additional-apparent-mass effects, and all those that

involve k% are usually treated together with the inertia forces rather
than with the aerodynamic forces. For compressible flow, however, the
forces are calculated in a different manner, and the division of the
forces into circulatory and potential parts then has little meaning.
Consequently, in order to facilitate the extension of this analysis to
compressible flow, this distinction will not be made herein.
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The aerodynamic forces are therefore written as

lg = 2nqe [8l(k) a + Co(k) Z_Z/:E}
_ ( (61)
ng = Eﬂch l:a%(k) a + a')_*_(k) E%E]

gso that for incompressible flow

G (k) = (1 + 2e,1k) C(k) + }éE - e5k2

~ . k2

Co(k) = -ik C(k) + =

Ca(k) = (1 + 2¢ik)e; C(k) - %— ik + <_5.1§ + 632>k2
G, (%) = ~ike; C(x) - 325- k°

In order to calculate the 1ift at a given point of a wing of finite
span an appropriate Green's function is required. An approximation to
this function based on a reciprocity theorem of linearized lifting-surface
theory, is given in the first part of this paper; as used for the compu-
tations of that part, this function implies the assumptions that the
spanwise distribution of the 1lift for oscillations of the wing as a whole
is substantially invariant with frequency and that this distribution is
the same in direct as in reverse flow. Neither of these assumptions is
essential to the analysis but both, and particularly the first, simplify
it considerably. With these assumptions, the desired lift distribution
is then given by expressions of the form of equations (32a) and (34).

For the present purpose, however, a set of aerodynamic influence
coefficients is required, rather than influence functions. Buch a set
of coefficients, based on the same ideas, can be obtained readily by the
techniques used in references 9 and 10. The result may be expressed as
follows:

1. = Cp ©q<C(k at + Co(x 2 62a.
£l - o Ba 4800 (alfe) + Bl >[Q]{E/2}} (6es)
where the aerodynamic-influence-coefficient matrix [Q] is defined by

[a] = 1 - D YrHIIE] + x)
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where, in turn, {l} is a unit column matrix, and LIJ is a row of

integrating coefficients suitable for integrating a continuous function
for a range of its argument from O to 1. Thus, for instance, if n
equidistant points on the semispan are considered, and n 1s odd, then
according to Simpson's rule

1 |1 4 2 & o1
)= ——l= 5 2555 - - - 35 =
=535 53 3 4

Very little information is available concerning the spanwise distri-
butions of the pitching moment on wings of finite span in unsteady flow.
By means of the reciprocity theorems an appropriate Green's function
could be estimated if the 1ift distribution for wings with parabolic
camber were known; however, such 1ift distributicns do not appear to have
been calculated for wings of finite span in unsteady flow. In fact,
relatively little is known about moment distributions even in steady flow.
However, the available information indicates that the local center of
pressure does not appear to be very sensitive to the 1ift distribution.
(See ref. 9, for instance.) It will be assumed that this is also true
in unsteady flow at a given frequency, and that, furthermore, these cen-
ters of pressure are given by two-dimensional theory. With this assump-
tion the moment can be written as

{m’I‘}a = O, {'55(k)]:c] [Q]{oc} + au(k)]:cl [q] {%%2—}} (62b)

The 1lift and moment distribution due to the gust can be calculated
in a similar manner. In the following analysis, the magnitude of the
gust intensity is considered to be unity, and the longitudinal reference
point is the intersection of the elastic axis and the wing root, so that
the instantaneous gust intensity at any station y is

Ay
-1k tan A
w=e /2 (63)

With this function w,

Sl ST

{mT} .4 ¢(k)
g

where @(k) is the Sears function, as before.

r (64)
— ] ﬂ{ﬁ
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Finally, the inertia loads are

= -z + mesCa

mp; = -(r2 + (egc)E)ﬁE + ﬁeECE

or _
{1} - - E(;)g lhiege] {o} + B(;)g SR
2\2 2\2
> (65)
{mT}i = > E 5 kZ[;2 + (ezc)%l[ﬁl{a} - - : 5 ke[ﬁegél{z}
2(‘2‘) §(§> J
The loads applied to the wing can thus be written, in summary, as
I 20, Cp(x) [@]+ | o ® G(x) [q] - i ]
Sl e R
R i}
= q | e e R T W (66)
My 2Cr,, 61;(k) IC] [&] - E Cr,c 53(1{) [cl [Q] + o
2 o Or,® #0) @]
k_ 2['1“ne2c1 i_k:E [rg + (egc)zl[ml U [elcl
£9 ES | |

loads Applied to the Tail

The loads applied to the tail are similar in nature to those applied
to the wing, but the tail experiences additional loads as a result of
the downwash produced by the 1lift on the wing. Again, little is known
about the downwash in unsteady flow, and even in steady flow the downwash
cannot be predicted accurately because of boundary-layer effects on the
fuselage and the wing root. Consequently, even in steady-flow analyses
experimental results are usually relied upon.

In the following analysis, the assumption is therefore made that
experimental results are available for steady flow, in the form of the
downwash derivative Be/aa. In order to determine the attenuation of
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this value with frequency, the results of the analysis of reference 16
will be used. These results indicate that the time variation of the

tail lift due to the downwash caused by the wing 1lift which results from
a unit jump in the wing angle of attack can be approximated by an imme~
diate jump in the tail 1ift of -0.16 of the steady-state value and another
jump to the steady-state value after the time required to travel the dis-
tance from the 45-percent-chord point of the wing to the quarter-chord
point of the tail plus another eighth of the chord length. Hence, for
sinusoidal angle-of-attack changes the tail 1ift due to downwash is

‘ +1 Cy

kit
(Lte)a . 'C]'_mtqtst = -0.16 +1.16e c/2 kT (1+ 2eu1k)oz.r- ik /2]

(67)

where xt' 1is the distance from the intersection of the elastic axis

and the wing root (assumed for this purpose to be at the 45 percent point
on the root chord) to the aerodynamic center of the tail. As pointed

out in reference 16, this approximation is valid only for k < 0.35;
however, this range 1s adequate for the present purpose.

Similarly, the downwash associated with the wing 1lift due to sinus-
oidal gusts gives rise to a tail 1ift which, within this approximation,

is
o —ik<_—}?;—+i f}) -0.61k (_36—1’
2 C
(Lte)g = -C1,_ . Q¢ Ft g—i -0.16 + 1.16e  © e w, (68)

(The additional lag represents the time required to travel the 0.6 root
semichords from the 45-percent-chord point of the root, which is the
reference point for the gusts, to the T5-percent-chord point of the wing

'root, which is assumed to be the point governing the 1lift at the wing

root, inasmuch as it is the centroid of the influence function for the
chordwise pressure distribution.)

The other aerodynamic forces are those due to the motions of the
airplane, those due to the tail deformations, and those directly due to
the gusts. On the basis of the assumptions made in the preceding section,
these forces are

Clwtqtst[55(k) ap + Bg() T+ Byl 2o+ Bgl) A (69)

C
Xt'——i

C;r 48 ik —
La’ttt¢(c_tk>el 6/2

Lty = (70)
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where
¢ c
t 1 t
~ X-t"l"— (o) c c X-t +
Cs(k) = \L + 21k ——2 2 c(:tk>+l:tk-_:’9____ L e
¢ ¢ 2 c c c
c c
d = -1 _t L2t 2
Cg(k) ik C(E 19 +5 =k
~ e)-']-ct C . C c 2
Co(k) = (} + 2ik —& ) c<:£ k) +ibx e (1;> K2
T c c 2 c St\ ¢

and Qo and 2z, are the angle of attack and vertical displacement of
the airplane at the wing root.

The inertia load on the taill is
Lti = —mt(ir + N7 - xt"d.r)

or

mtqu
T T2
99)
2(2

Here the center of gravity of the tail has been assumed to coincide with
its aerodynamic center; in order to remove this assumption it 1s necessary
only to add (or subtract) the distance between the two to x¢' 1in equa-

tion (71).

I%i (Zr + Az - xt'aT) (71)

The normal forces on the tail can then be summarized as follows:
Ly = q[Fl(k) zy + Fp(k) ap + Fz(k) 2o + F (k) Az + Fs(k) wt] (72)
where

X

! c
Fy(k) = 2C; %“- %J"i Celx) + ik g% ~0.16+ 1.16e kel T e

5]
ol
ks
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Fo(k) = C L g '6(k)-1+2eik-5£-016+
o) = Cr, F 849 T5(k) - L+ 2¢,3k) £ |-0.
~
_1k<it2+i= %‘-—i> _
1.16e ¥ -t tg Kk
s §)
83
Fo(k) = ¢ g ¢ (k)
3 Lep @ 7877
F), (k) = 2¢ % i*i Celx) + Tt 2
R
2\2
C. q.8 €t
IU; ot c lk—-:
. -t _t 2c _ Qe |,
F5(k) = ¢(E k) e < |- 16 +

The pitching moments corresponding to these normal forces can be
obtained in the manner employed for the wing. However, inasmuch as the
tail chord is usually small compared with the fuselage length, the
travel of the center of pressure of the tail is small compared with the
length xt'. Hence, the center of pressure will be assumed to remain
at the aerodynamic center of the tail, and the pitching moments are
then -xi' +times the corresponding forces, so that

M, = -q_xt'[Fl(k) 2y + Fp(k) ap + F5(k) Lo + B (k) Az + Fg(k) wt] (13)

v

Wing and Tail Deformations

The wing deformations may be calculated either from structural
influence coefficients or from the bending and torsion stiffnesses of
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the wing used in conjunction with simple beam theory. The latter approach
will be followed here, based on the method of reference 12.

The bending and torsion moments on the wing structure may be obtained
by integrating the applied loads. If numerical methods are employed to
perform these integrations the results may be written as follows:

(b/2)% - | -
Mg p—— {r1] i-51n A E[I] )
ol EECEEEERERS b (71
M I (o] gcos A :g—[I] | iy

ey ) A
e B I

o s T " Bt ot - D G . S " b s ot o G g o o . P G S - T 0

~sin A(g)g[ln]% . C:‘LJ_I [

(75)

- o o o e e

where the integrating matrices (see ref. 12) perform the following

operations:
[} %—f: £(g') ag’

| 1z}{e} %félf; £(e") ag" ag'

wl i : 1 1
I fr-h f ) a
[ J{ f o (& g

[II”Hf} -&fogfogl £(g") ag" ag’
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These integrating matrices may be based on the trapezoidal rule, Simpson's
rule, or any other numerical method; the intervals chosen for ¢§

(0 £ ¢ £ 1) need not be of constant width unless a specific rule demands

a uniform spacing.

The structural deformations of the wing may then be written in
terms of the applied loads as

| z
=q -—f-i ----- J + q|----- (76)
@ - ap oK 6.

where the submatrices {_(D], [@], [@], [@] s [@], and [@]

designate, respectively, the four quadrants and two halves of the matrices,
obtained by postmultiplying the square matrix of equation (75) by the
square and the rectangular matrix of equation (66), respectively.

For the purpose of the present analysis, which is concerned primarily
with the wing stresses, the tail deformations are treated by including
only the vertical displacement and angle-of-attack change of the tail as
a whole due to the tail load. These quantities may be obtained from a
static test which consists in applying a concentrated normal load at the
aerodynamic center of the tail and measuring these deformations. They
may also be obtained from a vibration test in which the deflection curve
of the rear part of the fuselage in the lowest vertical-bending mode is
measured; in this case the desired spring constants can be deduced from
the frequency relation of a simple mass oscillator in terms of the meas-
ured frequency and of the mass of the empennage (including the part of
the fuselage which may be considered to move with the empennage). In
the absence of such tests these constants may be calculated in an anal-
ogous manner.

The tail deformations may then be written as

bo = KLy
(17)
bz = Koply
so that, also,
Ko g
Az = - Kf'ﬁﬂ' (78)
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Inasmuch as these deformations are not independent of each other, only

one need be retained in the analysis. Therefore, if Az is eliminated
by means of equation (78), Aa can then be obtained in a form similar

to that used for the wing deformations in equation (76):

K
bo = -qy 4P (k) 2y + Fplk) ap + [Fy(k) - 2R (k)| Aot - gk Fy(k) wy
1
(79)

Equations of Motion

Equations (76) and (79) are equations of motion inasmuch as they
describe balances of aerodynamic, structural, and inertia forces. In
fact, if the airplene fuselage were immobile (ap = zy = 0), they would

be sufficient to calculate all unknown quantities. However, if the
fuselage is free to move, two additional equations are required to obtain
the two additional unknown quantities o, and 2y. These additional

equations are those expressing the dynamic equilibrium of the forces
on the fuselage, namely,

Ly + Ly = me(fp - & &) = 0
(80)
MW’ - X'tLt - (I‘f2 + (AX)‘?’)mfa,r + Ax IIlf.Z:r = 0

where the wing 1ift and pitching moment can be expressed in terms of the
1lift and moment distributions ¢ and m as

L, = |2 Blal, LOJJ{ z}

- (81)
M, = L—E(}%>2tan A Iz, 2 B JJ { ;T}
quL@J{Z +a|®{+}
My = qt@_l {Z}+ q L@DJ{W} ( -

o

J
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where I_@ J, L@ J, I_@J, and I_@_l are the rows obtained by

postmultiplying the rows of equation (81) by the square and rectangular
matrices of equation (66). In equation (80) the fuselage lift and moment
have been neglected; they can easily be expressed in terms of a,. and

Zy and included, if desired.

The equations for the tail deformation Ax and those for the
overall normal force and pitching moment can be combined with equa-
tion (76) as follows: For the sake of definiteness it will be assumed
that n stations on the wing are considered, including the one at the
root, so that there are 2n + 1 unknown quantities, and that in the
column matrices defining applied loads, deformations, and so on, the
values at the root of the wing are written at the top:

( 3
Zroot
2 Ztip
@ = 4 Lroot r
A, .
Lip
L A

The first and (n + 1)th equations of the system defined by equa~
tion (76) express only the trivial fact that the structural deformation
at the wing root is zero. They are replaced by equations (82) and (79),
which are adjoined to the system, to yield the cambined equation of
motion

o i b1 I ) ] ) B 1]
11 ! | i !
-101 i 0 10 z C) () Z C) h W
1001 | ! ! i ﬁ
I I
....... : : ;
——————————————— r————-——----————r-- 4-- B - g --> N *-—--—r- ~--
L) . (~* ) * E {Wt (832)
1 1 1
0 :—lO 1 :O a C) C) a GD :
}4_00 1 | 1
1
] ] 1
——————————————— it sty B e el b X -- e
0 H o 1| A | i ! A 0 |
L. 1 P t 1 Jd L - | -
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If the square matrix on the right side of this equation is designated
by [A], the rectangular matrix by [B] , and the quasi-unit matrix on

the left side of the equation by [l'] , the equation can alsoc be written
as

[0 - spd)i et - o0} (o

The matrices [@] to [] are the same as the matrices [@]

to [@] of equation (76), except that the first rows of the latter,

which are all zero, are replaced as follows:

Quantity added to the
leading element

m
) Pirst helf of | (D] Py (k) + —L 1

First row of - Replacement

me Ax
) Second half of L@J Fo(k) - ——5 k2

] Xt
First half of L@J -xy Fp(k) - X > K2

)

®

Second half of L@J ~xy, Fp(k) +

=] o
L(@J 0

® ©
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Also, the elements of the last rows and columns of the matrices [A]

and [B] are zero, except for the following:

K
2
A1 en1 = F3(k) - K 7 (k) By, ne1 = Fr(k)

K, Boal,ntl = %t F5(k)
Antl,ons1 = X |F3(k) - K, F), (k)
Bonsl,ntl = -K1 Fs(k)

Aont1,1 = Ky Fi(k)

Aopil,n+l = ~Ki Fp(k)

Aonsl,ontl = ‘Kl{%B(k) - gﬁ Fu(kﬁ

Solution of the Equations of Motion

For the purpose of calculating the desired transfer functions,
equation (85b) may be solved directly for a given value of g as a set
of linear algebraic equations with coefficients given by the matrix

[1] - q[A] and with "knowns" given by the column matrix q[B]{;;}

(yhere (2}, [B], ana {;’} are functions of k). The result is &
t

column matrix of the unknown amplitudes of the motions of the airplane.
If this column is calculated for several values of k 1n the range of
interest, these amplitudes, considered as functions of k, are transfer
functions from the gust to the motions.

This column matrix can be substituted into equation (66) and the
1
resulting column matrix {mT} substituted into equation (7&), to yield
a column matrix of bending and twisting moments which again, considered
as a function of Kk, represents transfer functions from the gust to these

moments. A set of transfer functions for the vertical shear could be
calculated similarly from the relation

{p - feea e}

The stress at any point of the structure can be assumed to be given
by a linear superposition of the bending moment, twisting moment, and
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vertical shear at the given station, if elementary beam theory 1s used.
If elementary beam theory cannot be used because of the interaction of
bending and torsion stresses or because of shear lag, the stress at a
given point can be expressed as a linear superposition of moments and
shears at other stations as well as the given station. In elther case,
the transfer function for the given stress is then produced by the same
linear superposition of the transfer functions for the corresponding
moments and shears.

It may be noted that, at zero frequency, solution of equation (8%3p)
yields the static aeroelastic deformations and thus permits the calcu-
lation of the changes in the 1ift distribution and the shift of the
aerodynamic center that result from static aercelastic action. Also,
inasmuch as this equation completely describes the dynamic behavior of
the airplane, the speeds at which aeroelastic instability phenomena
occur can be calculated from it, although such calculations are beyond
the scope of this paper. Suffice it to point out that for such a calcu-
lation the degrees of freedam of the body must be eliminated first, as
a result of the way in which the problem has been set up. This elimin-
ation can be effected readily by considering the first and (n + 1)th

rows of [A], but with Ay, Al,n+l’ An+l,l’ and An+l,n+l replaced
by 0. If these rows are premultiplied by

-1
Al A n+1

Anv1,1 Pnel,nel

and used as the first and (n + 1)th rows of a matrix which is otherwise

a unit matrix, and if this resulting matrix is referred to as {l"],
then equation (83b) can be written for this homogeneous case as

0107 - i 2 - o}

The products [l{l[l"] and [A][}"] will now have two null rows and

columns each, which correspond to 2z, and ap. If these rows and columns
Z
are deleted in a Yy, yielding a column

Jated

are deleted and Zp and Ly,

Z 1
o » , the remaining matrices are nonsingular, so that they can be inverted
A%

and the preceding equation can be written as
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1

(] - o] =

it
(@]

(84)

where [E] is the identity matrix, and
oea] = [T W]

The horizontal braces designate the fact that the null rows and columns
have been deleted.

Equation (8&) is in the canonical form for the calculation of
eigenvalues. If k is set equal to zero and the elgenvalues of [D(Oi]

are calculated by iteration, expansion of the determinant, or any other
suitable method, the lowest real and positive one represents the value

of the dynamic pressure at divergence. For swept wings the value lowest
in sbsolute magnitude is usually negative and is therefore of no practical
significance, although it is often used as an index of the aercelastic
behavior of the airplane.

This calculation can be repeated for various positive values of Kk,
the first few eigenvalues being obtained for each. The results, which
will generally be complex, can be plotted against k. When any of the
elgenvalues becomes purely real, it represents a dynamic pressure at
flutter, and the corresponding value of k represents the reduced fre-
quency at flutter. (This statement is true only if the structural damping
is zero; such damping effects can easily be included, but the details of
the process are beyond the scope of this paper. )

DYNAMICS OF THE IARGE FLEXIBLE AIRPLANE

For the large flexible airplane the fundamental proposition of
power spectral analysis, that the output power spectrum of a system is
the product of the absolute square of the transfer function and the input
power spectrum, is no longer valid if the input is considered to be the
gust intensity at a point. ©Nor can the output power spectrum be expressed
directly in terms of an effective input spectrum, as in the case of the
rigid airplane, where this simplification resulted from the assumption
that the indicial-response function was expressible as the product of a
function of time alone and a function of distance along the span alone.

In the first section of this part of the paper the statistical
problems involved in an analysis of the response of a large flexible
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airplane are considered. The nature of the generalized transfer functions
required for this purpose is described, and the means whereby they are
combined with the input spectrum are indicated.

The second section is concerned with an extension of the method
outlined in the preceding part to the case of the large airplane.
Although fundamentally the dynemlc aspects of the problem are unchanged,
and although the longitudinal and lateral degrees of freedom can still
be separated, a direct application of the approaches outlined in the
preceding parts of the paper to the large airplane requires consideration
of the entire wing, rather than only one half of the wing. Little addi-
tional computing time 1s then required to treat the lateral and longitu-~
dinal degrees of freedom simultaneously, and the necessity of combining
the results of two separate analyses is obviated. However, attention
can still be confined to one half of the wing by using the technique
outlined in the discussion following equation (55) and in the section
headed "Combination of the Results Obtained From Analyses of the Longitu-
dinal and Lateral Degrees of Freedom." Basically this technique consists
in splitting the influence functions of concern into symmetric and anti-
symmetric parts and using one part for an analysis involving the longitu-
dinal degrees, and the other in an analysis involving the lateral degrees.
If this approach is adopted, separate analysis of longlitudinal and lateral
degrees of freedom is still preferable.

Extension of the Statistical Approach

The power spectrum and, hence, the mean-square values of the
responses such as the stress at a given point on the wing of a large
flexible airplane due to flight through turbulent air can be calculated
in several ways. Perhaps the most direct of these consists in using the
basic approach outlined in the first part of this paper and starting
with an expression for the instantaneous value of the stress in terms
of a sultable indicial-response influence function, namely,

© ~b/2
o(t) =f_wf_b/2 b (t1sy) w(U(t-t1),¥) dy dty (85)

The function hg(t,y) is, as before, an indicial-response influence

function or Green's function for the partial differential equation. It
relates the stress as a function of space and time coordinates to the
applied loads, which are also functions of space and time coordinates.
The essential difference between the problem considered in this section
and those treated in the first two parts of the paper is that this func-
tion can no longer be expressed as a product of a function of t alone
and y alone. In some cases - in a modal approach, for instance - it

-
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may be expressible as a sum of several such functions, and then the
approach used previously for the bending of a large rigid airplane free
to move vertically may be adopted, as has been done in reference 13.
However, in this section the case is considered in which even this
simplification cannot be made.

The correlation function for ¢ can be calculated directly from
equation (85), and for the case of axisymmetric turbulence it is

)= [ [ iy wreme) (PP ) o s 00 2 €9

b/od b /2

Hence, the power spectrum of o can be obtained by calculating the
Fourier transform of this function and is

b/2 ~b/2 _« . N
Plw) =~/:b/2 /e Hy (@¥q) Bo(0:¥p) @@ |yoyy]) dvy dvp,  (8T)

where @w(w,n) is the two-dimensional spectrum considered previously,

Hy(w,y) 1is the Fourier transform of ho(t,y) with respect to time,
and. the asterisk designates a complex conjugate, as before. Thus, the

R .
function Hy(w,y) is & transfer function from sinusoidal vertical gusts

(of width dy) impinging on the wing at a given station y on the wing
to the stress o, or a Green's function for the ordinary differential
equation (with the quantity w as a parameter) that relates the stress
amplitude as a function of the space coordinate y to the amplitude of
the applied sinusoidal gusts.

*
The term Hg (w,yl) Hg@»,yg) in equation (87) is complex; however,

the imaginary part can be ignored because it contributes nothing to the
integral as a result of the fact that &w depends only on |y2 - yl‘.

In a manner analogous to the one employed in the first part of this
paper, the double integral in equation (87) can be evaluated by intro-

ducing the function ﬁﬁ(w,n) which takes the place of the function T'(7n)

used previously and is defined by an autoconvolution of Hz(w,n):

- b/2 *
Flo,m) = 2 [ R{Hi.’ (,7) H‘;m,ym)} &y

b/2
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where Ii{ } designates the real part. Hence,
b .
9 (w) = fo ¥ (w,m) &,(0,n) an (88)

Another approach consists in using the double Fourier transform
®W(K) of the axisymmetric input correlation defined in the first part

of this paper. In terms of this function the correlation function WU(T)
can be written as

® pe nb/2 b/ 1 AU (Tt =t,) s (o , E
\lfo.(‘l') = l%fmf.mnﬂb/gf_ /;ﬂf tl)yl) t2)Y2) € [ . (T+ B 2>+ 2(y2 yl)] d"-'( 7\12+7\22> ANy dAp dyy dyp dty dty
Ur [
f f SMUT g xl,)\z)!z °w<\ 7\12+>\22> g

where the function
© ~b/2 .
AW -1i(A Ut+A Y
Hy(ALsho) =f f hg(t,y) e (MUtHAay) dy at
=00 ..b/2

represents the Fourier transform (with respect to y) of the function
Hﬁ(w,y), that is,

b/2 -1?\ g
Boane) < [, < o) & (89)
Hence,
co o] (<] ")\ Ut .
_ 1 AT iwr [aw 2 2., 2
P (w) Mf_mf_mf_m e e Hy (o) ‘Dw(\’M Ay )d)\l an, dr

L
20

ﬁﬁi(%;,x)ﬁw( (%)%2) an (90)

With the approach outlined in the next section, the function

W
Hc(w,Y) can be calculated either directly or indirectly, by first calcu-

lating the transfer function from that gust to the lift distribution and

{
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then the transfer function from the lift distribution to the stress.
For the indirect method,

b/2

By (w,y) = o/ 5 (w,7) 13 (w) G(n,y) dn

where the function Hg(w) G(n,y) is the influence function for the local

1ift or the Green's function for the aerodynamic problem involving sinus-
oidal gusts considered in the first part of this paper; the symbols 1
and y in G(n,y) are interchanged, however, so that the function now
defines the contribution of a gust at station y +to the 1ift at sta-

tion m. The transfer function Hé(w,n) relates the (sinusoidal) stress

at the given point to a unit concentrated (sinusoidal) normal force
acting at station 1.

With this indirect method, the power spectrum for the stress at a
given point can be calculated by starting with the power spectrum for
the 1lift distribution calculated in the first part of the paper. For
this approach o(t) may be written as

© ~b/2
o(t) =f_wf_b/2 hé (tl,y) Z(t-tl,y) dy dty

so that

b/2 ~b/2 .
‘lfg('r) =f f f U(t]_’yl) hc(tg,y2> ¥y ('r+tl-t2,yl,y2) dy, dy, dt; dt,

b/2d -b/2
and
b/2 pb/2 ok
(PO.(UJ) =/:b/2 ._'b/g Hy (CD;Y1) Hé(w;YQ) C})Z(w,yl,y2) dy; dy, (91)
where

WZ(T)ley-e) = Z(t)yl) Z(t+tJy2)
The Fourier transform of this correlation function is, then,

v 2
Py (@5¥15Y,) = IHZ(‘D)I Py (@) (92)
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(See the section headed "Generalized Aerodynamic Influence Functions in
Unsteady Flow.") Hence,

b/2 ~b/2 *
CP ((D) |HZ(U~))| fb/sz/z ’yl) Hg(‘“;)’g) CPW (‘D) G\Vl dY2 (95)

If Qwe(w) is given by equation (35), the double integral can be

expressed in terms of single integrals as follows:

= |H‘{(w)|2[(1 - K)2|G(w)|2cpwe(w) + 2K(1 - K)R{G(w) G'*(w)}

b
K2f G"(w,n) 9, (w,n) dn} (9k)

0

where

b/2
G(w) Ef-b/e B (w,y) 7(y) ay

b/2
¢'(o) = f_b/2 B (w,y) 0y *(0y) 7(7) ay
(v/2)-
a"(w) = efb/2 T]‘% {HZ}((D:Y)} R{H;(w,y+n)} +

T {Hé(w,y)} I{Hz;(w,ym)}:‘ y(y) y(y+n) ay

as before, R{-} designates the real part, and I{ } designates the

imaginary part.

Equations (88), (90), and (93) thus represent three methods of
obtaining the power spectrum of the given stress. One requires a trans-
fer function from the local gust intensities directly to the stress, an
autoconvolution of this trensfer function, and the spectrum of turbulence
defined by equation (16); the second requires a two-dimensional spectrum
of the turbulence defined by equations (17a) and (17b) and a Fourier
transform of the aforementioned transfer function with respect to y;
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the third utilizes an autoconvolution of the transfer functions from
local concentrated loads to the stress and the spectrum for local lifts
due to vertical gusts calculated in the first part of the paper. The
choice of approach depends to some extent on the information avallable,
but is largely a matter of individual preference.

The snalysis in this section has been based on the premise that
both halves of the wing would be treated simultaneously. Attention can
be confined to one wing by using only the symmetric parts of the influ-
ence functions in an analysis involving the longitudinal degrees of freedom,
and only the antisymmetric parts in an analysis involving the lateral
degrees of freedom. The symmetric part of am influence function for a
unit concentrated load or gust acting at station y is the response func-
tion for two loads or gusts of 1/2 unit intensity acting at stations ¥y
and -y, respectively. Similarly, the antisymmetric part is the response
for a load or gust of 1/2 unit intensity acting at station y and an equal
and opposite load or gust acting at station -y. If this approach is
chosen, some of the integral expressions given in this section assume
slightly simpler forms. For instance, equation (89) can then be written
for the symmetric part as

b/2

Bo(Mhg) = Efo cos Ny Ho(MU,y) dy

and for the antisymmetric part as

b/2

Hy(Mahp) = -21 fo sin Ay Hg(MU,¥) &y

Calculation of the Required Transfer Functions

Depending on which of the methods outlined in the preceding section
is used, one of two types of transfer functions is required - either the
one from local gusts to the stress of interest, or the one from the local
1ift to that stress. Both of these functions differ in several respects
from those considered in the preceding part of this paper.

For either type of transfer function the structural deformations of
the wing under concentrated loads as well as under distributed loads
will be required, so that the numerical-integration schemes used in the
preceding part have to be modified to some extent. Also, it may now be
preferable to consider the entire wing (rather than the one semispan
considered in the case of the small flexible airplane), so that the
various transfer functions are asymmetric. With the degrees of freedom
considered in the analysis thus doubled, it becomes preferable to include
one additional degree of freedom, roll, rather than to perform two sepa-
rate analyses for symmetric and antisymmetric motions with, respectively,
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cne and two less degrees of freedom, and then to combine the results. Howe
ever, if the alternative approach of splitting up the influence functions
into symmetric and antisymmetric parts for use in two separate analyses is
adopted, only one semispan need be considered, and the results presented

in this section can then be simplified to a large extent.

Before discussing the modifications required to extend the dynamic
analysis outlined in the preceding part of the paper to the large air-
plane, it might be pointed out that chordwise deformations (deformations
parallel to the chord) will again be ignored. Again, they can readily
be included by a straightforward extension of the approach used here if
it is felt that they may be significant in any given case. If they are
included, however, yawing and possibly also sideslipping motions can
probably no longer be ignored, because they may give rise to large forces
in the chordwise direction. If the entire wing is treated, these two
additional degrees of freedom can readily be included, and all longitu-
dinal and lateral degrees of freedom are then treated simultaneously;
if two separate analyses are performed for the longitudinal and lateral
degrees of freedom, the symmetric and antisymmetric parts of the influ-
ence functions being used and only one semispan being treated, these
additional degrees of freedom enter only into the lateral analysis.

The structural deformation due to local (concentrated) loads can
be obtained in several ways. If measured influence coefficients are
used, they pertain precisely to such loads and, in fact, must be modified
before they can be used for distributed loads (see ref. 12) so that it
is necessary only to use the unmodified coefficients.

If the deformations are to be calculated in a manner similar to that
employed in the preceding part, the integrating matrices must be replaced

as follows:
of) w Lfr]

where
Ipq_' =1 (¢ >p)
P oL _
Ipq =5 (q P)
Ipq' =0 (q<P)
and

(‘g—)z [11] vy g[n']
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where
IIpg' = ¥q - ¥p (22 p)
I%q'=0 (g <p)

The factor of 1/2 for Ipp' constitutes an approximation which implies

fairing through a discontinuity. If this approximation is to be avoided,
the deflections due to unit concentrated loads (the structural influence
coefficients) can be calculated directly from simple beam theory, in
which case the limits of integration take care of the discontinuities.
Thus, for instance, for an unswept wing, the normal deflection and twist
at Ip due to a unit concentrated load and torque, respectively, at Vg

are

A

Yp ¥V yq -
= q =Y t
Zpq —f ——— dy dy (7

yq pv' yq - Tq q -
= J dy d; ! - f N J
2, vy + (¥ Y ady Yn > ¥
pd fo ( D q) o EIy) ( P q)

o EI(y)
_ [P 2 g <
S ‘f o @Y (7 < v4)
Jq
apg = fo —‘GJ:(LY) dy (¥ <)

The concentrated loads under consideration arise as follows: For
the transfer functions relating local 1lifts to the desired stress, the
local 1lifts may be considered to be concentrated loads of unit magnitude,
associated with concentrated torques of magnitude ejc. Egquation (85b)

can then be written as (see also eq. (76))

i - afal i - [&'] ____I‘_’l___ (95)

where [w]~ is a diagoral matrix of the values of w defined by equa-
tion (63), and where the matrix [B'] represents either the four

influence-coefficient matrices for 2z and o due to concentrated loads
and torques, or the square matrix of eguation (75) with modified inte-
grating matrices, as discussed in the preceding paragraphs.
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It may be noted that equation (95) now represents not one set of
simultaneous equations but several, all having the same coefficients
but different sets of knowns (as defined by the columns of the matrix

on the right side) and, hence, different sets of unknowns (the columns
-

of the matrix af }. This situation is due to the fact that the func-
Lo
tions under consideration are, in effect, the responses of the airplane

as a whole to sinusoidally varying concentrated loads and are different
for each location of the applied load.

Once this equation has been meodified to take into account the
overall body motions and tail deflections (as explained in the preceding
part) as well as the rolling motions (as explained in the following

Z
paragraphs), it can be solved to yield the unknown values of [(1]. From
Do
these values the bending and twisting moments, as well as the vertical
shears, can be calculated and added to those due to the concentrated
loads. When combined linearly as required for the desired stress, these

moments and shears yield the desired transfer functions Hé(w,y).

If the transfer function directly from the local gusts to the desired
stress is to be determined, the response of the airplane to the 1lift
distribution induced by a sinusoidal gust of width dy acting at sta-
tion y must be calculated. This 1lift distribution is the Green's func-
tion considered previously. If it is represented by the relation

ﬂg(w) G(y,n), with G(y,n) defined by the approximation given in equa-

tion (34), the concentrated loads arise from the delta function in that
expression. The right side of equation (95) becomes, in that case,

a(1 - K) H(w) H [7(y) y(a)] Tl + ok #(w) [r J [7(y)1[w1

where !R' represents the square matrix of equation (75), and [R ]

the one dlscussed in connection with equation (95 Again, several sets
of simultaneous equations are implied. Their solution (after modifica-
tion for overall motions and tail deflections) yields values of z and

o from which the transfer functions Hﬁ(w,y) can be calculated.

RS
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The extension of the method of the preceding part to the calculation
of the deformations on both wings 1s straightforward. Essentially, dis-
tributed 1lifts and torques now have to be calculated for both wings and
integrated with matrices which can be assembled from those used for one
wing alone. No new problems arise in this process, so that it need not
be discussed further.

The inclusion of rolling motion, however, is not so straightforward.
One method consists in replacing all values of 2z 1in equation (8%a) or
its equivalent by =z + 8y and then reducing the columns involving this
quantity by the following relation (which assumes that the new unknown
quantity, the roll angle ©, is listed at the end of the column):

r — —
1 |t : L]
1 | Lo
1 i o
z + 8y L ! 0 10t ey ¢ Z
! P
{ i
1 1 ]
i [ J
______ i 11
_____________ SECHUNEUPERUUPS o RGOS B Qe
1 :
) 1 !
S = PL : & 7
a 0 ! 1 e o
i . !
1 |
1 1
1 ]
1 1
____________________ }_ """""""‘"""""If"'"""""' ——
%ol H b1 Lo
o 0 ; 0 i 1 o
1 i
i JoL . ' 41

An additional eguation must then be joined to the set, namely, the
equation of equilibrium in roll

b/2
f Uy) vy &y - LB - Mp,B = 0 (96)
-b/2

where Iy, is the inertia in roll of the fuselage and empennage alone
inasmuch as the inertia effects of the wing are included in 1(y), and
MDt is the coefficient of damping in roll for the empennage. For most
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cases both of these contributions are negligible. If they are ignored,
equation (96) can be written in matrix notation as

LII_]{Z} =0
where LIIJ is now a matrix which serves to perform the integration

required in equation (96). This condition can then be adjoined to the
other equations of the set in the same manner as equations (82) were
adjoined to the set in the preceding part.

The result, again, is a set of simultaneous equations for =z, a,
Ao, and © from the solution of which the desired transfer functions
can be obtained as outlined in the preceding paragraphs. Also, as before,
once the unknowns 2y, ay, and © are eliminated from the set, the

divergence and flutter speeds can be calculated by conventional matrix
operations; these speeds will then pertain to an airplane free to move
vertically as well as in pitch and roll and, hence, will include divergence
and flutter speeds in antisymmetric as well as symmetric modes.

DISCUSSION

Some Implications of the Assumptions Concerning the Nature

of Atmospheric Turbulence

The turbulence was assumed to be homogeneous in order to make the
problem stationary in the statistical sense and thus permit the use of
the mathematical techniques developed for such problems. In a practical
sense, turbulence can be homogeneous only in a limited body of air. The
assumption thus implies that the dimension of this body of air along the
flight path is large compared with the distance traversed in the reaction
time of the airplane, which in the case of load studies is of the order
of the time to damp to one-half amplitude, but in the case of motion
studies may be much larger. Obviously, the greater the body of air, the
greater the reliability with which the loads and motions can be predicted
(in a statistical sense) for one run through it. In general, turbulence
at very low altitudes, which may be influenced significantly by the con-
figuration of the ground, and turbulence in thunderstorms may not be
sufficiently homogeneous for the purpose of this type of analysis, but
other types of turbulence are likely to be substantially homogeneous over
sufficiently large distances.

Isotropy was assumed in order to permit the required two-dimensional
correlation functions to be expressed simply in terms of the one-dimensional
correlation functions. For sufficiently short wave lengths all turbulence
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is isotropic, but for long wave lengths it can be isotropic only if it is
homogeneous (poth in the plane of the flight path and perpendicular to
it). The condition of axisymmetry, which is sufficient for most of the
results presented herein, is less restrictive than isotropy inasmuch as

it does mot specify the variation of the characteristics of the turbulence
in the vertical direction. In practical problems, if the turbulence may
be assumed to be homogeneous, the conditions of axisymmetry and isotropy
are likely to be satisfied to a gufficient extent to permit the use of the
approach presented herein for all but very long wave lengths. The wave
length at which it ceases to be valid depends on the size of the body of
air under consideration, being larger for a large body.

Taylor's hypothesis (to the effect that a space displacement Ax
along the flight path may be identified with a time displacement T = AX/U
in the gust correlation functions) implies that the variation in gust
intensity that prevails along the flight path at any instant will remain
substantially the same until the airplane has traversed the given body of
air. The required correlation functions for atmospheric turbulence are
thus in the nature of space correlation functions (rather than time corre-
lation functions) and have been considered as such. The statistical char-
acteristics of the turbulence are then independent of the speed at which
it is traversed. Clearly, whether or not this hypothesis is valid depends
on the flying speed of the airplane. On the basis of present knowledge
no definite lower limiting speed can be quoted. However, indications are
that the hypothesis is valid for flying speeds greater than about 100 or
200 feet per second. The effect of finite flying speed on the gust corre-
lation function can be expected to be most pronounced for large distances,
where the correlation is weak, so that the effect on the various spectra
is likely %o be small and to occur at the longest wave lengths, where, as
previously mentioned, the spectrum is somewhat uncertain for other reasons
as well; this effect is thus more likely to be significant for large than
for small airplanes.

The particular correlation function used herein for the calculations
of the "averaged" correlation functions and spectra has certain theoretical
shortcomings - primarily that the associated spectrum does not decrease
rapidly enough for very short wave lengths. However, it does appear to be
adequate to represent the available information concerning the spectra of
atmospheric turbulence (see ref. 17, for instance) because the behavior
at very short wave lengths is relatively unimportant, inasmuch as airplanes
cannot respond to them, and the behavior at very long wave lengths is
usually in doubt by reason of the nonhomogeneity of actual turbulence. In-
the intermediate range of wave lengths, this correlation function appears
to be quite satisfactory.

The parameter L¥ (the integral scale of turbulence) used herein is,
for practical purposes, a largely fictitious quantity, inasmuch as it is
proportional to the values of the gust spectrum for infinite wave lengths,
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vhich, in view of the uncertainties in the values of the spectra at large
wave lengths, have little physical significance. Therefore, at present,
insufficient information is available to give a value for L¥ +to be used
in connection with the numerical results calculated herein, although a
value of 1,000 to 2,000 feet appears to be appropriate. As more informa-
tion concerning the spectrum of atmospheric turbulence becomes available,
more definite values can be deduced by fitting an analytical expression
of the type used here to measured results in the range of frequencies of
primary interest, and then using this expression as a means of obtaining
a value of I¥ by extrapolation of the measured results to infinite wave
lengths (zero frequency).

Considerations Pertinent to the Application of Stationary-
Random-Process Techniques to Gust-Load Problems

The purpose of this section is to point out how, in principle, the
results of analyses of the type outlined herein may be used in overall
load analysis and, hence, in the design of an airplane.

Consideration is confined in this paper primarily to the power spectra
of the motions and stresses of interest. As pointed out in references 1,
2, 3, and 11, for instance, a great deal of statistical information of
direct interest can be obtained from the power spectrum. For instance, if
the random process of concern (say, the given stress as a function of time)
has a Gaussian probability distribution, the expected number of peaks at
or beyond a given level in a given period of time can be calculated very
simply from the integral of the spectrum and its second and fourth moments.

The results obtalned in this manner pertain to continued flight in a
given body of turbulent air. They have to be generalized by determining
the likelihood of flying through turbulence of the given characteristics.
(See ref. 18.) The probability of exceeding a given stress level during
the expected 1life of the airplane while flying through atmospheric turbu-
lence can thus be calculated in straightforward fashion. To this proba-
bility must then be added the probability of exceeding this level in
maneuvers, landings, and, possibly, also in turbulence due to thunder-
storms, because in view of the possibly nonhomogeneous character of turbu~
lence in thunderstorms and the possibly nonlinear nature of the aerodynamic
forces incurred while flying through them, the techniques used herein may
not be applicable to flight through thunderstorms, and a separate analysis
may have to be performed.

Although the available information concerning atmospheric turbulence
is inadequate to permit of any definite conclusion, the results obtainable
with the approach outlined herein may turn out to be most significant for
the prediction of the low- and medium-amplitude stress cycles which are
important to fatigue studies; their validity for or contribution to the
prediction of very severe loads remains to be seen.
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CONCLUDING REMARKS

The statistical approach to the problem of calculating the dynamic
responses and the stresses of an airplane subjected to continuous random
atmospheric turbulence has been extended in several respects; basically,
only the assumptions of linearity, that is, of small motions and deforma-
tions, as well as homogeneity and axisymmetry of the turbulence are
retained.

The first problem considered was the effect of spanwise variations
of the instantaneous turbulent velocities on the 1ift and moments due to
turbulence. The mean-square 1ift has been shown to be reduced consider-
ably if the span of the airplane is relatively large compared with the
integral scale of turbulence. The shape of the spectrum of this 1ift is
affected relatively little by spanwise variations of gust intensity,
except at very high frequencies, if the decrease in the effective mean-
square intensity is taken into account. The effect of sweep on the mean-
square 1ift and its spectrum has been shown to be small for wings with
a given distance from root to tip.

If the variation of the instantaneous velocities is taken into
account, the rolling moment to which the airplane is subjected can be
calculated. The mean-square rolling moment has been shown to be propor-
tional to the ratio of the wing span to the integral scale of turbulence
for small values of that ratio. Similarly, expressions for the mean-
square values and the power spectra of the local 1lift, the bending moments,
and the pitching moment have been given. For some of these forces the
required aerodynamic information cannot be calculated by existing methods,
Therefore, certain approximations, based on experience with steady aero-
dynamic forces and available knowledge concerning unsteady forces, had to
be made for the aerodynamic influence functions in unsteady flow.

The next problem considered was the dynamic response of a rigid air-
plane to random turbulence. This problem had previously been treated
for the case of an airplane free to move only in the vertical direction
and small enough so that variation of the turbulent velocities along the
span could be neglected. In the present paper the response of an airplane
in three longitudinal degrees of freedom was considered; calculations were
made which suggest that the inclusion of deviations from the mean hori-
zontal motion is superfluous in gust-load calculations. For the remaining
two longitudinal degrees of freedom, the mean-square normal and angular
acceleration have been shown to be functions of only two parameters other
than the mass ratio and scale parameter of the single-degree-of-freedom
case, namely, dimensionless forms of the short-period frequency and of
the time to damp to one-half amplitude. An indication is given of the
menmer in which the results obtained in connection with the first problem
can be used to extend this dynamic analysis to the case in which variations
of the turbulent velocity along the span have to be taken into account.
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The last problem treated was the dynamic response of a flexible
airplane, including vertical motion, pitch, and, when necessary (as
when spanwise variations in gust intensity are taken into account), roll.
Horizontal and lateral (yawing and sideslipping) motions were disregarded
because they do not generally affect the wing stresses due to vertical
gusts. A method which represents an extension to the dynamic case of a
numerical-integration approach to the static aeroelastic problem has been
outlined for the analysis of the problem at hand. The modifications
required in the basic statistical approach and in this method of dynamic
analysis in order to treat the case in which spanwise variations of the
gust intensity are important have been discussed.

Although most of this analysis has been confined to the vertical
component of turbulence, it has been shown that the simultaneous action
of longitudinal, vertical, and lateral gusts on the wing stresses (with
due allowance for the fact that vertical gusts affect both the longitudi-
nal and the lateral motions of the airplane) can be taken into account by
simply adding the power spectra of the various contributions, provided
the turbulence is isotropic; the cross correlations or spectra have been
shown to vanish either by the symmetry or antisymmetry of the influence
functions involved or as a result of the statistical independence of
mutually perpendicular velocity components.

The approach presented herein thus furnishes a foundation for the
prediction of the statistical properties of the stress experience of a
given airplane once the appropriate statistical characteristics of the
atmosphere have been determined.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., November 5, 1956.
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> TABLE 1.- DEFINITTIONS AND NUMERICAL VALUES OF

STABILITY DERIVATIVES

Derivative Definition Numerical value
for the example
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(b) Swept wings, m = 0.5.

Figure 1l.- The mean-square averaged vertical component of turbulence.
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